(优秀)六年级上册数学教案
作为一位兢兢业业的人民教师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?以下是小编帮大家整理的六年级上册数学教案,仅供参考,欢迎大家阅读。
六年级上册数学教案1
解决问题的策略
教学内容:
教科书第89-90页的例1、“练一练”,练习十七第1题。
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
提问:现在老师在天平的左边放上两个菠萝,要使得天平平衡,右边可以放些什么?追问:还可以怎么放?
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(1)小明把720毫升果汁倒入9个相同的小杯,正好都倒满,每个小杯的容量是多少毫升?
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法——替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
谈话:解这题时,我们可以把大杯换成小杯来计算,也可以把小杯换成大杯来计算,那你觉得这两种方法之间有何共同之处?
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的'?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
追问:把小盒换成大盒也能做吗?把原来的5个小盒换成5个大盒,现在这7个大盒中,一共装了多少个球?
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的数量。
四、巩固练习
1.用33元钱正好可以买12本练习本和8本硬面抄,练习本的单价是硬面抄的1/4。练习本和硬面抄的单价各是多少元?
2.一袋薯片比一盒巧克力便宜3元。妈妈买了8袋薯片和15盒巧克力,一共花了91元。薯片和巧克力的单价各是多少元?
3.练习十七2(机动)
解决问题的策略
——替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
三、培养学生的探索精神和创新能力。首先,解决问题需要学生根据具体问题情境去主动探索,这本身就有利于培养学生的探索精神;其次,任何数学问题的解决,只有通过对已掌握的知识和方法的重新组合并生成新的策略和方法才能实现问题的解决。所以这个过程又是一个创新的过程,它
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
六年级上册数学教案2
教学内容:课本第115页整理与复习第18-22题。
教学目标:
1、通过复习,使学生巩固长方体和正方体的表面积和体积的有关知识,理解常用的体积(容积)单位的意义。
2、在复习过程中,进一步培养学生动手操作能力、空间想象能力和画图能力。
教学重点:复习巩固长、正方体表面积和体积的知识。
教学难点:在实际问题的解决过程中培养学生的空间观念。
课前准备:课件
教学过程:
一、实物展示、揭示课题
出示一个长方体。
师:看了这个盒子,你能向同学们介绍它的哪些知识呢?
学生回答:(可能有:这个盒子是长方体,我能求出它的表面积和体积,我还知道它的各部分名称呢!)
这节课我们就一起来复习这方面的知识。(板书课题)
二、整理与回顾
1、复习长方体和正方体知识。
师:谁上来画一个长方体的图给同学们看一看呢?一人上黑板画。指名二人对照这个酒瓶盒和图,说说长方体的各部分名称。
学生口答。
师:正方体呢?指名说说正方体各部分名称及特征。
2、复习长、正方体表面积和体积。
指名学生回答长方体和正方体表面积和体积的'计算方法。
练习:求下面各物体的表面积和体积。
①长8CM,宽6CM,高5CM
②长12DM,宽6DM,高2.5DM
③ 棱长9M.
学生计算,完成后集体核对。
3、拓展提高。
(1)出示课本第115页第18题。
学生独立填写合适的单位,完成后指名回答,讨论所填写的单位是否合适。
(2)出示课本第115页第19题。
复习单位名称之间的互化。
(3)完成课本第115页第20题。
学生独立填表,填完成集体讨论讲评。
(4)做课本第115页第21题。
出示展开图,你能说出这个正方体相对的面分别是谁吗?指名学生发挥想象力思考,指名回答。
三、练习巩固、开启想象
出示:(每人发一张作业纸)
师:大家自己动手测量所需要的数据,计算长方体的表面积和体积。
四、课堂总结
今天学习之后,你对长、正方体的知识又有了什么新的认识?还有什么疑惑的问题?
五、布置作业
课本第115页第22题。
教学反思:
六年级上册数学教案3
教学内容:
教材第14~15页例9及做一做,练习三第4~7题。
教学目标:
1、让学生在解决“求一个数的几分之几是多少”的分数乘法基本问题的基础上,尝试自己学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。初步构建分数乘法问题的知识结构。
2、培养学生的阅读理解分析能力,以及合作意识和相互沟通的能力。养成良好的解决问题的检验习惯。
【目标解析:“求比一个数多(或少)几分之几的数是多少”的分数乘法问题较复杂,是在解决“求一个数的几分之几是多少”这类分数乘法基本问题的基础上发展引申出来的,教师可以放手让学生在旧知识的基础上自主学习,大胆探究。】
教学重点:
让学生在解决简单的分数乘法问题的基础上,学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。
教学难点:
初步构建分数乘法问题的知识结构。
教学过程:
一、情境引入,阅读思考
(一)课件出示信息
人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多。
(二)阅读信息,思考问题
1、请学生认真阅读信息,思考:根据这些信息你能提出哪些问题?
预设:
(1)婴儿每分钟心跳比青少年多多少次?
(2)婴儿每分钟心跳的次数是青少年的几分之几?
(3)婴儿每分钟心跳多少次?
2、这些问题中,哪些你能解答出来?
对于前两个问题,学生根据自己学过的知识就能解答。解答完第一个问题时,说说怎样解决“求一个数的几分之几是多少”的问题。
【设计意图:一方面复习解决分数乘法基本问题的方法,对解决分数乘法问题中表示数量关系的句子进行深入理解,为后续学习做好准备;另一方面,让学生学会收集、选择和加工信息。】
二、由浅入深,探索新知
(一)改题
在课件上补充前述问题(3):“婴儿每分钟心跳多少次?”,呈现例9。
(二)探索解决稍复杂分数乘法问题的方法
1、认真阅读例9,理解题意。
阅读课本第14页例9及下面的“阅读与理解”和“分析与解答”的线段图,并思考:
(1)你从题目中读懂了什么?把“阅读与理解”栏目的内容填写完整。
(2)从“分析与解答”的线段图中你又读懂了什么?说说每一条线段的意义。
(3)你认为该怎样解决这个问题?尝试自己做一下。
2、同桌讨论。
(1)说说题意和图意。
(2)把你的解题思路说给同桌听。
3、集体讨论。
(1)说说你是怎样理解题意的`?(可直接读题理解,也可通过线段图理解。对于遇到困难的同学,可以再次出示线段图辅助理解,尤其是对第二种解法的理解)。
(2)你是怎样解答的?说说解题思路。
(3)你能用自己的方法检验两位同学的解答是否正确吗?如果有困难可以提示一下(算算135次比75次多几分之几?)。
4、回顾小结。
你是通过哪些途径来理解题意的?(反复阅读,画线段图,找准表示单位“1”的量等,特别强调画线段图在理解题意中的作用。)
【设计意图:通过学生阅读例题、画线段图等活动培养学生的阅读能力和自主探究的能力。又通过讨论、小结,使每位同学都学有所得,同时培养学生的合作意识和沟通能力。】
三、课堂练习,强化新知
1、 P15做一做。反复阅读,仔细分析。独立完成后,同桌讨论解题思路和方法。
2、理解“分率句”专项训练:
(1)六(1)男生人数占全班人数的。
把看作单位“1”,是的,女生人数占全班人数的。
女生人数=全班人数× 。
(2)电视机的数量比洗衣机多。
电视机=洗衣机× 。
3、独立作业(部分可选作本节的课后作业)
(1)昆虫飞行时经常振动翅膀。蜜蜂每秒能振动翅膀236次,蝗虫每秒振动次数比蜜蜂少。蝗虫每秒能振动多少次?
先求什么?再求什么?你有几种解题方法?
(2)鸡的孵化期是21天,鸭的孵化期比鸡长。鸭的孵化期是多少天?
你能通过画线段图的方式分析题目的意思吗?
(3)严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中的泥沙沉积在河道中,其余被带到入海口。有多少亿吨泥沙被带到入海口?
跟同桌交流一下你的思考过程。
(4)磁悬浮列车运行速度可达到430千米/时,普通列车比它慢。普通列车的速度是多少?
同桌之间互相说说用不同方法解答的思考过程。
【设计意图:留给学生充分的练习时间,让学生进一步理解、巩固这节课所学知识。教师也可以在巡视过程中及时发现问题、解决问题。】
四、课堂小结,归纳提升
1、这节课我们学习了什么内容?
怎样解决求比一个数多(或少)几分之几的数是多少的问题。
2、它与前一节课所学的知识有什么共同之处和不同之处?
归纳得出:求一个数的几分之几是多少,都是用这个数去乘几分之几。这里的几分之几有时候可以直接从题目中获取,有时候要根据题意自己计算出来。
解法一:
A.确定单位“1”的量。
B.根据求一个数的几分之几是多少,先求出中间问题。
C.再计算题中所求的问题。
解法二:
A.确定单位“1”的量。
B.先求出所求问题相当于单位“1”的几分之几。
C.根据求一个数的几分之几是多少,求出答案。
【设计意图:此处的课堂总结有利于学生构建分数乘法问题的知识结构。】
五、互动游戏,适度拓展
师:这堂课同学们都学得很好,现在还有时间,为了奖励大家,我们一起来做一个游戏。
我这里有2个盒子和30个乒乓球。现在老师拿几个乒乓球放到一个盒子中,但是不给你们看到底拿了多少个,看哪位同学猜得准。
师:我只告诉你们一个条件:“1号盒子里乒乓球的个数是总个数的。”你能说出1号盒子里有几个乒乓球吗?
师:如果1号盒子里乒乓球的个数是总个数的,你能说出2号盒子里现在有几个乒乓球吗?
师:你没有看见,怎么会知道另一个盒子里有25个乒乓球呢?
【设计意图:在课堂最后安排了有趣的数学游戏,使学生在轻松愉快的氛围中回顾分数乘法的学习内容。】
六年级上册数学教案4
第一单元
长方体和正方体
第5课时
体积与容积(1)
教学内容:
课本第10--11页例6、例7,“试一试”和“练一练”,练习三第1-4题。
教学目标:
1、让学生经历观察、操作、猜测、验证等活动过程,体会物体是占有空间的,而且占有的空间是有大小的,理解体积和容积的意义,能直观比较物体体积或容器容积的大小。
2、让学生在学习活动中进一步发展观察、操作和想象能力,增强空间观念。
教学重难点:
通过操作活动,初步认识体积和容积的意义。
课前准备:
直尺,木条。
教学过程:
一、教学例6
1、通过实验,让学生体会到物体是占有空间的。
教师按书中过程操作。问:为什么会剩一些水?引导学生认识到桃子占有一定的空间。
如果改用其它的物体呢?再实验。
小结:通过刚才的实验,我们发现物体是占有空间的。
2、通过实验使学生体会到物体所占的空间是有大小的。
出示两个完全一样的玻璃杯,边操作边讲述:一个里边放荔枝,一个里边放桃。想一想:哪个里面放的`水会多些?
学生自由发表意见。
想一想,两个杯里都装了物体,为什么倒进去的水有多有少呢?
学生交流。
小结:物体不仅占有空间,而且占有的空间是有大有小的。
3、揭示体积的含义。
出示3个大小不同的水果,问:哪个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?
学生独立思考后让同组的同学交流。
通过刚才的三次活动,你有什么感受?
教师在学生交流的基础上揭示体积的含义,并让学生举例。
二、教学例7
1、出示两个大小不同的书盒子,拿出书盒里的书,问:你能看出哪个盒子里的书的体积大一些吗?
教师讲述容积的含义,并问:这两个盒子,哪个的容积大,为什么?
2、完成“试一试”。
同桌交流,指名回答。
三、巩固提高
1、完成“练一练”第1、2题.
先做第1题:直接判断,并让学生从体积、容积的含义上说明原因。再做第2题,让学生从容积的含义上进行解释。
2、完成练习三第1-4题
四、课堂总结:
让学生自己说一说这节课所学到的知识。
六年级上册数学教案5
一、看图回答问题。
1.下图为某路公交车的行车路线。
从广场出发向( )行驶( )站到电影院,再向( )行驶( )站到商场,再向( )偏( )的方向行驶( )站到少年宫,再向( )偏( )的方向行驶( )站到动物园。
2.贝贝从幸福路站出发坐了4站,他可能在( )站或( )站下车。
3.京京坐了3站在少年宫下车,她可能是从( )站或( )上车的。
二、选择。
1.图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的(??)。
A.东偏南30°方向500米处???????B.南偏东60°方向500米处????
C.北偏西30°方向500米处???????D.西偏北30°方向500米处
2.如图,下面说法正确的是(??)。
A.小红家在广场东偏北60°方向上,距离300米处
B.广场在学校南偏东35°方向上,距离200米处
C.广场在小红家东偏北30°方向上,距离300米处
D.学校在广场北偏西35°方向上,距离200米处
第2页
1.根据统计图完成填空。
(1)11%,15%
(2)文学,哲学
(3)2
2.下面是人民路服装店销售某品牌运动服的情况统计,根据统计图回答问题。
(1)8%
(2)MLLS
(3)1600×22%=352(套)
答:销售了352套。
第4页
1.选择正确答案的序号填在括号里。
(1)张晓辉想了解自己班上同学喜欢看新闻类、体育类、文艺类等电视节目的人数各占百分之几,可以制作(C)统计图。
A.条形B.折线C.扇形
(2)张晓辉想了解自己班上同学上星期看电视的时间在半小时及以内、半小时以上到1小时、1小时以上到1个半小时、1个半小时以上四种情况的人数各有多少,可以制作(A)统计图。
A.条形B.折线C.扇形
(3)张晓辉记录了自己上星期每天看电视的时间,如果想清楚地看出上星期看电视时间长短的变化情况,可以制作(B)统计图。
A.条形B.折线C.扇形
2.
(1)扇形条形折线
(2) A C 540
(3)增加
(4)例:A牌和E牌电视机销售量最多。
第6页
1.
(1)C (2)B
2.
(1)环境保护表扬投诉
(2)20 12
第9页
2.
(1)2.5 2.5(20xx新版为2.5,20xx版是2)
(2)B
3.一个圆柱形茶杯的底面半径是4厘米,这个茶杯的底面周长是多少厘米?放在桌上占桌面多...
3.14x2x4=25.12(厘米)
3.14x4
=3.14x16
=50.24(平方厘米)
答:这个茶杯的底面周长是25.12厘米,放在桌上占桌面50.24平方厘米。
第10页
1.
(1)长方形底面周长高
(2)圆相等
2.左图:
3.14×(7÷2)×2+3.14×7×8
=76.93+175.84
=252.77(cm)
右图:
3.14×5×2+3.14×5×2×6
=157+188.4
=345.4(cm)
3.14×16×8
=50.24×8
=401.92(平方厘米)
答:罐头包装盒侧面商标纸的面积至少401.92平方厘米。
3.14×(16÷2)×2+401.92
=401.92+401.92
=803.84(平方厘米)
答:大约需要铁皮803.84平方厘米。
第11页
4. 6÷2=3(厘米)
3.14x3x2+3.14x6x8
=3.14x9x2+3.14x6x8
=3.14x66
=207.24(平方厘米)
答:这个圆柱的表面积是207.24平方厘米。
第18页
1、略
2、图(1)是以长方形的宽边为轴旋转而成的。
这个圆柱的底面半径是2cm,高是1cm。
图(2)是以长方形的长边为轴旋转而成的。这个圆柱的`底面半径是1cm,高是2cm。
第19页
1、略
2、长:2×3.14×5=31.4(cm)
宽:20cm
21页
2×3.14×5×20=628(cm2)
第22页
1、(1)1.6×0.7=1.12(m2)
(2)2×3.14×3.2×5=100.48(dm2)
2、3.14×8×13+3.14×(8÷2)2=376.8(cm2)
第25页
1、75×90=6750(cm3)
2、3.14×(1÷2)2×10=7.85(m3)
26页
1、3.14×(8÷2)2×15=753.6(cm3)
1L=1000cm3
703.6<1000,带这杯水不够喝。
2、3.14×(O.4÷2)2×5÷0.02≈31(张)
3.l4×(6÷2)2×10=282.6(cm3)=282.6(mL)
第34页
1、1/3×19×12=76(cm3)
2、1/3×3.14×(4÷2)2×5×7.8≈163(g)
37页
1、第1、2、6幅图是圆柱。
圆柱的两个底面都是圆,并且大小相同;
圆柱的侧面是曲面,侧面沿高展开后是一个长方形(或正方形);
圆柱有无数条高。
第3、4、5幅图是圆锥。圆锥的底面是一个圆;
侧面是一个曲面,侧面展开后是一个扇形;
圆锥只有一条高。
2、圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+两个底面的面积
圆柱的体积计算公式是通过把它转化成长方体导出的;圆锥的体积计算公式是经过试验导出的。
3、(1)3.14×10×20+3.14×(10÷2)2×2=785(cm2)
(2)3.14×(10÷2)2×20=1570(cm3)=1570(mL)=1.57(L)
1.5<1.57,这壶水够喝。
4、(1)3.14×(4÷2)2×2+1/3×3.14×(4÷2)2×4=628/15(dm3)
0.65×628/15=20xx/75(kg)
(2)20xx/75×70%=14287/750(kg)
六年级上册数学教案6
第三单元 分数除法
第8课时 比的基本性质
教学内容:
课本第55页例9、例10和“练一练”,练习九第5-8题。
教学目标:
1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。
2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使
学生认识事物之间都是存在内在联系的。
教学重点:
理解比的基本性质。
教学难点:
正确应用比的基本性质化简比。
课前准备:
多媒体课件
教学过程:
一、复习导入
1、填空。
师:除法、分数和比之间有什么联系?
2、做复习题。
师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?
3.导入课题。
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、学习新课
1、教学例9比的基本性质。
(1)学生填表
(2)提问:联系商不变的.性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?
(3)师生共同总结比的基本性质:
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.
(4)师:你觉得哪些词语比较重要?
0除外你怎样理解?
2、教学例10应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比。
(1)12:18 (2) 5/6:3/4 (3)1.8:0.09
(1)让学生试做第(1)题。
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。
(2)化简第(2)题。
师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?
(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简第(3)题。
师:想一想如何化简小数比呢?
让学生独立在书上化简,指名板演
师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?
三、巩固练习
1、把“练一练”第1题填完整。
2、“练一练”第2题。
指名板演,其余练习,完成后集体核对。
3、做练习九第7、8题。
4、出示选择
(1)1千米∶20米=( )
A 1∶20 B 1000∶20 C 5∶1
(2)做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
A 20∶21 B 21∶20 C 7∶10
四、课堂总结
师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
五、布置作业
练习九第5、6题。
六年级上册数学教案7
可能性
教学内容:苏教版数学六年级上册第八单元---可能性
教学目标:
1.通过学习,使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小。
2.认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
3.进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。教学重点:认识客观事件发生的可能性的大小,能用分数表示可能性的大小。教学难点:能用分数准确表示可能性的大小。
教学过程:
一、创设情境,导入新课
1.用“一定”,“可能”,“不可能”说一句话。
(板书:一定、可能、不可能)
2.出示天气预报的情境:
长沙,11月22日,气温8-16摄氏度,降水概率10%。
问:同学们,看了这个天气预报,你明天出门时会不会带雨伞?为什么?(不会,因为降水概率只有10%,说明下雨的可能性比较小)
3.我们以前只知道用语言描述可能性,而这里的`降水的可能性却用了10%这样一个具体的数,一个事情发生的可能性我们也可以用一个具体的数来表示,今天我们就来研究用数来表示可能性的大小。(板书课题:可能性)
二、探究与交流
1.同步体验。
(1)师出示袋子里有一个红球和一个黄球。
问:从中任意摸出一个球,摸到红球的可能性是几分之几?你怎么想的?(任意摸一个球,摸到红球的可能性是1/2。)
问:这里的2表示什么意思?1呢?
(2)老师在口袋中再放入一个绿球。
问:现在任意摸一个球,摸到红球的可能性是几分之几?
(任意摸一个球,摸到红球的可能性是1/3。)
师:都是任意摸一个球,摸到红球的可能性怎么会不同呢?这说明可能性的大小和什么有关?(可能性的大小和球的总数有关。)
板书:球的总数
(3)追问:如果要使摸到红球的可能性是1/5,口袋里该怎样放球?
如果要使摸到红球的可能性是1/20,口袋里该怎样放球?1/100呢?
(5)你有什么发现?分子都是1:表示红球个数;分母都是球的总个数;球的总数越多,摸到红球的可能性越小。
2.迁移与提升
教学例2。
(1)课件出示图。
师:在图中你看到了哪几张牌?
(2)师将6张牌反扣在黑板上。(师边说边演示)从中任意摸一张,摸到红桃a的可能性是几分之几?你是怎么想的?(一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。)摸到黑桃a的可能性是几分之几?摸到其它牌的可能性呢?你能用一句话来概括一下刚才同学们所说的可能性吗?
(3)师:看了这6张牌,你还能提出关于可能性的数学问题吗?先自己想一想,然后把你的问题在小组里说一说。
(学生四人为小组活动,互相提问。)
师:大家来交流一下你们提出的问题。
你能具体地说一说,为什么任意摸一张,摸到3的可能性是1/3吗?
小结:从这里我们可以说明可能性的大小不仅和物体总数有关,还和某种物体的个数或张数有关。
(4)对比提升:去掉一张黑桃3,还剩五张,你能用分数表示哪些可能性?同桌互相说一说。
师:“任意摸一张,摸到黑桃的可能性是2/5”。你是怎么想的?能把你的想法和大家说一说吗?
师:如果老师说一个分数,你们能说出怎么拿吗?
师:课后同学们继续可以做这样的游戏,一人说分数,一人拿牌,比一比,谁的思维最敏捷。
三、实践和应用
1.练习十八第1题。
2.生活中的数学问题。课本第95页练一练。
追问:如果把转盘上的指针转动80次,在红色区域的次数一定是10次吗?
3.设计中奖规则:课件出示
超市将在元旦进行中大奖活动,购物满100元,可以到转盘上转1次指针,如果你是超市的老板,你会怎样设计中奖规则?学生凭生活经验阐述。
师提问:为什么大家都认为指针停在红色区域是一等奖?
(指针停在红色区域的可能性最小,有利于商家)
4.完成练习十八第六题。
同学们平时在游戏的时候要想最快决定两个人的胜负经常会用什么方法?(石头、剪刀、布)那你样想过没有,这种决定胜负的方式是否公平呢?
小芳和小娟在做这个游戏,他们获胜的可能性各是多少呢?
出示表格。
把表格填写完整。
回答问题。
我们以后在游戏时就可以用今天所学的知识来判断是不是公平。
四、全课总结,感受价值。
1.提问:今天大家学得开心吗?你有什么收获?
2.联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
六年级上册数学教案8
教学目标:
使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。
教学重点:
整数除以分数的计算方法的推导。
教学难点:
理解“÷”转化为“x”的转化过程。
教学过程:
一、复习
1、说一说÷18的意义。
2、一辆汔车2小时行驶90千米,1小时行驶多少千米?
(1)口述算式和结果。
(2)板书:数量关系:速度=路程x时间
二、新授
今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?
板书课题:一个数除以分数
(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?
教师板书:18÷ (出示线段图)
(2)推导18÷的计算方法。
引导学生分两步进行计算
第一部分:求小时行多少千米。
提问
1)、小时里面有几个小时?
2)、2个小时行驶多少千米?
3)、1个小时行驶多少千米?即小时行驶多少千米?
明确:因为2个小时行18千米,所以要算18÷2,也就是18x(千米)。第二步:求1小时行多少千米。
提问
1)、1小时里面有几个小时?
2)、1个小时行驶18x(千米),那么要求5个小时行驶多少千米,算式应该怎样写?
明确
1) 为1小时5个小时,所以,要算18__5,也就是18x。
2) 18__5用18x代替,因为18__5=18x。(这里实际上是运用了乘法结合律)。
根据上面的推想,板书:18÷=18x,=45千米
答汔车1小时行驶45千米。
强调
1)18÷不便于直接除,把它转化乘法。
2)18÷=18x,“÷”转化为“x”,被除数不变,除数发生了变化。
3)是的`倒数,即的'倒数是。
2、小结:引导学生归纳整数除以分数的计算方法。
板书:整数除以分数可以转化为乘以这个数的倒数。
三、巩固练习
1、在( )里填上适当的分数,使等式成立。
15÷=15x( )10÷ =10x( )
8÷=8x( ) ÷9=x( )
2、列式计算。
(1)一堆煤,每次用去 ,多少次才能用完?
(2)王晶小时做15朵花,1小时做多少朵花?
3、教科书第29页的“做一做”
四、作业
练习八第1——4题。
六年级上册数学教案9
教学内容:
课本P19页和练习五。
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:
理解倒数的意义和怎样求倒数。
教学难点:
求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:自学书本P19。
并思考以下问题:
1)什么叫倒数?
2)怎么求一个数的倒数?
3)是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
1)两个数。
2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、练习
1、判断下列各组数是否互为倒数,为什么?
2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?
1)5的'倒数是多少?
2)所有的自然数都有倒数吗?1的倒数是几?
3)0有没有倒数?为什么?
4)怎样求一个数的倒数?
3、完成课本P19页的“做一做” 。
4、辨析:求3/5的倒数,写作:3/5=5/3。
五、思考:0.2的倒数是多少?
六、小结。
请学生说一说这节课学习了哪些内容。
七、作业:练习五3—8。
六年级上册数学教案10
本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。
由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。
教材还编排了很多问题情境图来突破教学中的重难点问题。
例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。
这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)
第1课时比的意义
教材48~49页的内容。
1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
重点:
理解比的意义以及比与分数、除法之间的关系。
难点:
理解比与分数、除法之间的关系,明确比与比值的区别。
课件:
学具。
1.课件出示教材第48页情境图。
教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?
(1)长比宽多多少厘米?15-10;
(2)宽比长少多少厘米?15-10;
(3)长是宽的多少倍?15÷10;
(4)宽是长的几分之几?10÷15。
2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)
自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)
(1)比各部分的名称。
课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)
(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?
讨论后根据学生交流反馈填写下表:
联系
区别
除法
被除数÷除数=商
一种运算
分子—分母=分数值
比
前项:后项=比值
两个量的关系
请尝试用字母表示比和除法、分数之间的内在联系。
板书:a∶b=a÷b=(b≠0)。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。
师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
1.教材第49页“做一做”第1题。
请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
2.教材第49页“做一做”第2题。
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)
3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。
说说这节课我们学习了什么?你有什么收获?
教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。
在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。
第2课时比的基本性质
教材第50~51页的内容。
1.理解和掌握比的基本性质,初步掌握化简比的方法。
2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
重点:
理解比的基本性质。
难点:
正确应用比的基本性质化简比。
课件、答题纸、实物投影。
师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?
板书:比的基本性质。
学生纷纷猜想比的基本性质。
根据学生的'猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
1.教学比的基本性质。
师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)
(4)全班验证。
2.完善归纳,概括出比的基本性质。
10∶15=10÷15==
15∶9=15÷9=
16∶20=(16
○
□)∶(20
○
□)
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善并板书。
(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。
3.深化认识。
利用比的基本性质做出准确判断:
(1)8∶10=(8+10)∶(10+10)=18∶20( )
(2)12∶16=(12÷6)∶(16÷4)=2∶4( )
(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )
(4)比的前项乘3,要使比值不变,比的后项应除以3。
( )
4.比的基本性质的应用。
(1)引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
(2)从下列各比中找出最简整数比,并简述理由。
3∶4 18∶12 19∶10 ∶ 0.75∶2
(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))
学生独立尝试,化简后交流。
(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)
(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))
四人小组讨论研究,找到化简的方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
5.方法补充,区分化简比和求比值。
)
还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)
2.教材第53页“练习十一”第4题。学生口答完成。
这节课你有什么收获?还有什么疑问?
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用
教材第54页的内容。
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
课件。
课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)
师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)
1.课件出示教材第54页例2。
师:题目中要配制什么?(配制500
mL的稀释液)
师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)
师:“浓缩液和水的体积比是1∶4”是什么意思?
生:就是说在500
mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。
师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?
师:你能求出浓缩液和水的体积各是多少毫升吗?
引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。
思路一:先把比化成分数,用分数乘法来解答。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500×=100(mL)
水的体积:500×=400(mL)
思路二:把比看作分得的份数,先求一份数,再求几份数。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500÷5×1=100(mL)
水的体积:500÷5×4=400(mL)
2.验证所求问题。
方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。
方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。
3.明确按比例分配的意义。
在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)
4.整理解题思路。
(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)
(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。
1.教材第55页“练习十二”第1、2题。
第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。
2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。
3.教材第56页“练习十二”第11题。
注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。
今天这节课我们主要研究了什么?说说你的收获和感受。
本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
六年级上册数学教案11
教学目标:
1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。
2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的.能力,提高应用意识。
3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
教学重点:
在方格纸用数对确定位置。
教学难点:
利用方格纸正确表示列与行。
教学用具:
动物园示意图的方格纸图。
教学过程
一、复习导入,提出学习目标。
1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?
2、揭题,提出学习目标。
让学生先说说,再出示学习目标:
(1)方格纸上什么线表示列,什么线表示行。
(2)利用方格纸确定物体位置的方法。
二、展示学习成果
1、认识方格纸的列与行。竖线是列,横线是行。
2、自主学习,小组内展示。
(1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)
六年级上册数学教案12
教学目标:
1、通过练习使学生进一步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题的过程中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
教学重难点:
掌握用“假设”的策略解决一些简单问题的.方法。
课前准备:
小黑板
教学过程:
一、填空
1、王大妈买了3只鸡和1只鹅,已知1只鸡的价钱是一只鹅的1/3。如果把鸡都替换成鹅,那王大妈的钱可以买( )只鹅。如果把鹅都替换成鸡,共可以买( )只鸡。
2、张师傅和王师傅合作加工一批零件,王师傅做3小时,张师傅做4小时,张师傅每小时比王师傅多做5个,如果按王师傅的效率算,总个数就减少( )个;如果按张师傅的效率算,总个数就增加( )个。
二、解决问题
1、王强家买来3大瓶果汁和5小瓶果汁,一共有3000毫升。每个大瓶中的果汁比每个小瓶中的果汁多200毫升,每个小瓶中装有多少毫升?
2、一只羊和四只兔子一共重48千克,一只兔子的重量是一只羊的1/4,一只兔子和一只羊各重多少千克?
指名板演,集体练习、评讲。
3、做练习十一第9-12题。
学生独立解答,完成后指名说一说解题思路。
三、创新练习
1、一次数学竞赛共20道题,规定做对一题得5分,做错一题倒扣3分,不做的题不得分。小华在这次竞赛中全部题都做了,总分84分,她做错了几题?
2、甲数比乙数多8,甲数的5倍与乙数的7倍一共是772,甲数和乙数各是多少?
以上创新练习让学有余力的学生尝试练习,不作为统一要求。
四、课堂总结
通过这节课的学习,你有什么收获呢?
五、布置作业
练习十一第8、13、14题。
六年级上册数学教案13
第三单元 分数除法
第6课时 分数连除和乘除混合
教学内容:
课本第50页例6、“试一试”和“练一练”,练习八第10-13题。
教学目标:
1、结合生活中具体的情景使学生经历探索分数乘除混合运算的计算方法的过程。
2、能正确解答分数连除或分数乘除混合运算的式题。
教学重点:
正确进行分数连除或分数乘除混合运算。
教学难点:
使学生经历探索分数乘除混合运算的计算方法的过程。
课前准备:
小黑板
教学过程:
一、复习引入
上节课我们学习了用方程解答简单的分数除法应用题,这节课我们学习分数连除和乘除混合运算。(揭示课题)
二、教学例6
1、出示例6中的条件,引导理解题意。
(1)读题,理解题意。
(2)从题目中我们可以知道哪些信息?这些信息之间有什么关系?通过信息的组合,我们又可以获得什么新的信息?
2、讨论解决问题的策略。
(1)出示要解决的问题:3盒果汁可以倒多少杯?
(2)怎么解决这个问题呢?自己先想一想,看能不能把结果算出来。
(3)交流:你是怎么想的?先算的是什么?
①如果先求3盒一共有多少升,怎么想?怎么算?
板书:4/5×3=12/5(升) 12/5÷3/10=8(杯)
②如果先求一盒能装几杯呢?
板书: 4/5÷3/10 =8/3(杯) 8/3×3=8(杯)
3、这题如果列综合算式怎么列?
(1)各自尝试列式。
(2)指名汇报,根据学生的汇报板书:
4/5×3÷3/10 4/5÷3/10×3
让学生在书上完成计算,并指名板演。
4、教学“试一试”。
(1)出示: 5/8÷3/4÷5/7 ,这题是分数连除,怎么算?
(2)学生在书上独立计算后讨论算法,师板书计算过程。
5/8÷3/4÷5/7=( )×( )×( )=( )
5、讨论:分数连除或乘除混合运算可以怎么计算?
(1)在小组中说一说。
(2)全班交流。
明确:计算分数连除或乘除混合运算时,先要把其中的`除法转化为乘法,再按照分数连乘的方法进行计算。
三、巩固练习
1、做“练一练”。
各自练习,并指名板演,然后评议矫正。
出示题目,比一比,看谁解得又对又快。
2、讨论练习八第11、12题中的数量关系。
(1)画出各题中的关键句。
(2)说说每题中关键句中的分数是什么意思,并说出数量关系式。
(3)完成练习八第13题。
各自练习后,将计算的结果填在书上。
交流:你是分别根据什么计算出各个洲的面积的?
四、课堂总结
这节课学习了什么?你有什么收获?
五、布置作业
练习八第10题。
教学反思:
六年级上册数学教案14
教学内容:第1~2页,例1及“做一做”,练习一1—7题。
教学目的:
(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
(2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
教学重、难点:
(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
(2)引导学生总结分数乘整数的计算法则。
教学过程:
(一)铺垫孕伏
1、出示复习题。(投影片)
(1)整数乘法的意义是什么?
(2)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(3)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的`结果做分子,分母不变。
2、引出课题。
分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)
(二)探究新知。
1、教学分数乘整数的意义。
出示例1,指名读题。
(1)分析演示:
师:每人吃块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)
(2)观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12×5是整数乘整数。
(4)概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:
由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:
请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
3、反馈练习:
(1)看图写算式:做一做、练习一第1题。
订正时让学生说出乘法中被乘数、乘数各表示什么?
(2)口答列算式:
=()×()
3个是多少?5个是多少?
订正时让学生说一说为什么这样列式。
(3)计算:
先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。
(三)全课小结。
这节课我们学习了什么?引导学生回顾总结。
(四)作业。
练习一5、6题。
六年级上册数学教案15
“空间与图形”领域的内容分图形的认识、测量、图形与变换、图形与位置三节编排复习,其中第一节里的形、体知识以及测量知识都比较多,又分平面图形、面积计算、立体图形、体积计算四段编排。
(1)分层复习图形知识,沟通平面图形间的联系。
复习图形知识按“线—角—形”的线索进行。
学生已经认识的线有直线、射线和线段。线段是二年级教学的,只是联系线段的图形描述了它是直的,有两个端点,长度是可以度量的。直线和射线是四年级教学的,通过线段向一端无限延长或向两端无限延长分别形成射线和直线的概念。复习直线、射线和线段的特征,一方面要突出它们都是直的线,另一方面要清楚它们的区别在于有、无端点和有几个端点。整理直线、射线和线段的关系,可以按以前的认知线索,通过线段的端点无限延长沟通联系,体会线段是直线或射线的一部分。四年级(上册)教学的平行与相交,是同一平面内两条直线的常见位置关系。如果两条直线相交成直角,则这两条直线互相垂直,垂直是特殊的相交。学生举例说说同一平面内两条直线的位置关系,有可能只说出平行与垂直,也有可能说成平行、相交、垂直。如果出现这些情况,应适当予以纠正。
从一点向不同方向画两条射线,组成的图形是角。把一条射线绕它的端点旋转,能形成大大小小的角。复习角的认识把这两种认识结合起来,“围绕角的顶点旋转角的一条边”要先出现角的图形,指出它的顶点和两条边,然后使角的顶点和一条边固定不动,另一条边旋转,让学生体会角的大小发生了变化,从而理解角的大小是它两条边的_开程度。复习角的分类可以分三步进行,第一步随着活动角从小到大地变化依次回忆锐角、直角、钝角、平角与周角。第二步分别说出直角、平角和周角的度数,整理这三类角的大小关系。第三步描述锐角和钝角,突出钝角大于90°、小于180°。
复习平面图形,先把学过的图形分成由线段围成的和由曲线围成的两类,又把线段围成的图形按边的数量分成三角形、四边形、五边形……然后着重整理三角形、四边形、圆的知识。
回忆三角形的知识时,出现了两张集合图。左边的图表示了三角形的分类,曾经在四年级(下册)出现过,可以利用这幅图让学生说说三角形是怎样分类的,以及各类三角形的特征。右边的图第一次在教材中出现,表示等腰三角形是特殊的三角形,等边三角形是特殊的等腰三角形。因为等腰三角形具有三角形的基本特征(三条边、三个角),又有一般三角形不具备的特征(两条边长度相等),所以它是特殊的三角形。而等边三角形具有等腰三角形的主要特征(两边长度相等),还有它独有的特征(另一边的长度和两腰也相等),所以等边三角形是特殊的等腰三角形。教材让学生思考,讨论“等边三角形也是等腰三角形吗”,体会右图里的一般与特殊、整体与部分的关系,进一步理解三角形、等腰三角形、等边三角形这些概念的联系和区别,建立正确的认知结构。教材还提出两个讨论题,在问题(1)里“任意两边的长度之和大于第三边”是三角形的三边关系,也是三条线段能够围成三角形的必备条件。要引导学生注意“任意”的含义,并应用到练习与实践第8题的解答中去。提出问题(2)有两个目的:一是进一步理解三角形的分类,在直角三角形和钝角三角形里也都有两个锐角;二是复习三角形的内角和180°,用内角和的知识可以解释一个三角形里最多有一个直角或一个钝角。
以前教学的四边形都是特殊的四边形,先认识长方形和正方形,再认识平行四边形与梯形,这是从学生生活经验和认知水平出发的安排。现在整理四边形的知识,设计了一张反映这些特殊四边形的关系图,从图中可以看到,如果四边形的两组对边分别平行就是平行四边形;如果只有一组对边平行就是梯形。如果平行四边形的角都是直角就是长方形,如果长方形的长与宽相等就是正方形。学生说出各个图形的名称和特征并不难,要把教学精力放在理解图形间的关系上,深入地认识四边形。
第98页练习与实践第2、3、4题分别复习两点确定一条直线,两点间所有连线中线段最短,以及点到直线的距离等知识。要通过解决实际问题再次体会这些内容,但不要求学生记忆这些知识。第6、7题是动手操作,如果学生使用量角器有困难,应给予帮助。在画长方形的时候,要复习画已知直线的垂线与平行线的方法,要求学生规范地使用画图工具。在画图形底边上的高时,要加强对底与高相对应的体验。
(2)复习平面图形的周长、面积,突出概念和思想方法。
与周长、面积有关的知识包括周长和面积的意义、计量长度和面积的单位、计算周长与面积的公式。复习这些知识按“概念与计量单位—计算方法或公式—实际应用”的线索进行。
周长与面积的概念在三年级初步形成,第二学段教学多边形和圆的时候又多次再认了周长与面积的意义,多数学生对周长与面积的体验是比较充分的。复习周长与面积的.意义,以回忆和辨认为主要教学活动,让学生说说对周长与面积的理解,可以联系实例进行解释。练习与实践第5题分别比较方格纸上两组图形的周长与面积,进一步体会周长与面积是存在于封闭图形上的两个不同的概念。复习长度单位和面积单位,让每个学生都用学过的单位描述身边的事物,在交流时就能整理出常用的长度单位千米、米、分米、厘米、毫米,整理出常用的面积单位平方千米、公顷、平方米、平方分米、平方厘米。练习与实践第2题以用纸折出1平方分米的正方形顺带复习其他面积单位的意义,通过1平方分米的正方形最多能分成几个1平方厘米的正方形,复习相邻单位间的进率。复习长度单位和面积单位要重视两点:一是让学生选择用手比画、语言描述、实物演示等方法表达1个单位是多长或多大,如1米大约是多长,1平方米是多大;二是要整理并记住相邻单位间的进率,下图就是一种整理方式。复习周长与面积计算公式的教学活动主要是回忆和整理。要联系周长的意义,从图形一周的边的长度总和解释长方形、正方形与圆的周长公式。如,长方形的四条边分别是两条长、两条宽,它的周长是(长+宽)×2。又如,圆的周长是直径的3倍多一些,即C=πd。要回忆各个面积公式的推导过程,进一步理解公式的含义,体验数学思想与方法。长方形、正方形的面积公式是在图形里摆面积单位推导的,长×宽(或边长×边长)的积是长方形(或正方形)里可以摆的面积单位的个数,也就是图形的面积。平行四边形是转化成长方形推导面积公式的,而三角形、梯形的面积公式又是转化成平行四边形后推导出来,因此,长方形的面积公式是基础,转化是重要的思想方法。练习与实践第9题画面积相等的图形,理解并记忆面积公式。依据先画出的长方形画面积相等的平行四边形,递推了平行四边形转化成长方形的步骤,加强了等积变换的体验。依据平行四边形画面积相等的三角形,可以使底的长度相同,把三角形的高画成平行四边形的2倍;也可以使高的长度相同,把三角形的底画成平行四边形的2倍。在画三角形的时候,能体验等底等高的平行四边形与三角形的面积的倍数关系。依据平行四边形画梯形,可以使高的长度不变,把平行四边形的底缩短,把对边延长,缩短与延长的长度相等。通过画梯形,对梯形的面积公式会有新的体会。学生解答这道题,还会有不同的思考方法,要组织交流,进一步体验各个面积公式。
应用面积知识解决实际问题的内容很丰富,有利用面积公式列算式求面积,也有按面积公式列方程算长度。还要结合求面积进行估计和测量,对不同单位的面积进行换算,并探索规律。
(3)整合立体图形的知识,发展空间观念。
立体图形是六年级教学的,圆柱、圆锥还是本册教材的新授内容。因此,立体图形的知识容易回忆,复习的目的不局限于回忆,还要整合知识,进一步精简和优化原有的认知结构。首先理解“正方体是特殊的长方体”,体会正方体具有长方体的全部特征。接着从意义和算法两个方面把长方体、正方体、圆柱的表面积联系起来,体会它们的表面积是所有面的面积总和,都是侧面积与两个底面积的总和,而且侧面积都可以通过“底面周长×高”计算。最后还用“底面积×高”概括长方体、正方体和圆柱的体积计算公式。通过这些整合,学生对立体图形的认识能提升一个层次,不再孤立地理解、记忆各个立体图形的表面积、体积的计算方法。
教材安排了许多有利于发展空间观念的学习活动,有观察几何体,把从正面、上面、侧面看到的图形画下来,或者根据给定的视图想像和做出立体;把平面图形绕它的一条边旋转,体会形成的立体;补充长方体的表面展开图,设计正方体的表面展开图;还要解答开放的实际问题。有些活动在以前学习时曾经开展过,多数活动是新的要求,富有挑战性。要重视活动的过程,让学生在独立解答以后进行充分的交流,体会知识的应用是灵活的,策略与方法是多样的。如第104页第4题,可以先从正面看到的图形和上面看到的图形得到长方体的长、宽、高各是多少,然后确定这个长方体的侧面图形;也可以在想像中把这个物体搭起来,体会侧面图形的形状,空间观念在推理和想像中得到了发展。再如第107页第12题,规格①、②、③的三种铁皮各选2张或1张,5张铁皮就能焊成一个无盖的长方体水箱。每种规格的铁皮都可以做水箱的底,因而焊成的水箱有三种尺寸,分别为长0.6米、宽0.4米、高0.5米,长0.6米、宽0.5米、高0.4米,长0.5米、宽0.4米、高0.6米。1张规格④的铁皮和4张规格①或4张规格③的铁皮都能焊成无盖的长方体水箱,这些水箱的底面是正方形,高分别是0.6米或0.5米。可见,平面图形(铁皮)的长、宽与长方体(水箱)的长、宽、高的转化是解决问题的关键,也是发展空间观念的极好机会。
(4)在方格纸上画图形,复习图形与变换的知识。
在图形与变换这一节里,复习的内容有轴对称图形、平移、旋转以及图形的放大与缩小等。
先回忆学过的图形变换,整理成图形位置变化和图形大小变化两类。理解平移、旋转都是改变图形位置的方法,不改变图形的大小;图形按比例放大、缩小,是改变图形大小的方法,不改变图形的形状。这些都是关于图形变换的基础知识。轴对称图形是一类特殊的平面图形,它的对称轴的两边形状、大小完全相同,而且沿对称轴对折图形,对称轴的两边能完全重合。
练习与实践让学生在方格纸上画图形,进一步体会图形的变换。其中第2题集中了小学阶段教学的图形变换的全部内容,在前面的教学中进行过这些画图活动。第3题综合应用平移与轴对称两个知识。圆是轴对称图形,经过圆心的直线都可以看作圆的对称轴。把圆与线段组合成轴对称图形,应着重思考线段的对称轴的位置。第(3)个问题引导学生观察画成的轴对称图形和它的对称轴,体会对称轴通过圆心并和已知线段垂直,而且把这条线段平均分成两段。第4题把图形按比例缩小后,计算新图形与原来图形的面积的比,再次体会“按1∶2的比缩小”是把图形每条边的长度变成原来的1/2,这个比不是面积缩小的比,进一步理解图形按比例放大或缩小的含义。
(5)在确定位置的活动中,复习图形与位置的知识。
确定位置的方法是逐渐教学的,先是联系个体经验,用上、下、前、后、左、右描述位置;再是联系生活常识,用东、南、西、北等八个方向词描述位置;然后既要描述方向,又要描述距离,比较准确地描述位置。另外,还可以用数对表示位置。
复习图形与位置,在具体情境中应用知识,进一步体会确定位置的常用方法。练习与实践在第1题的问题(1)里复习方向知识,应先确定平面图上的东、南、西、北,再确定东北、东南、西北、西南,动物园里任何两个景点的位置关系都可以用这些方向词描述。问题(2)用数对表示位置,要提醒学生遵照“横排是行、竖排是列”的规定,先写出各景点所在的列数,再写所在的行数。如孔雀园在第6列第4行,表示它所在位置的数对是(6,4)。第2题用方向和距离确定位置,要引导学生注意两点:一是描述方向只能用北偏东(西)或南偏东(西)若干度,不能随意改变说法;二是把比例尺1∶50000转化成“图上1厘米表示实际500米”,容易进行图上距离与实际距离的相互换算。第3题描述行走路线,进一步掌握方向知识。一般应要求学生口述,不必以书面形式回答。如果要求学生写出行走的方向与路线,应该用填空的形式。如从东园向()偏( )( )°方向行到兴民巷。另外,这题不宜要求学生说出从淮定桥到红梅新村的行走方向。
【六年级上册数学教案】相关文章:
六年级上册数学教案12-25
六年级上册数学教案11-16
人教版六年级上册数学教案01-08
【推荐】六年级上册数学教案01-24
六年级上册数学教案【荐】01-25
六年级上册数学教案【热】01-25
六年级上册数学教案【精】02-09
六年级上册数学教案:比的意义02-16
六年级上册数学教案优秀05-26
人教版六年级上册数学教案05-10