七年级数学上册教案【精品15篇】
作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?以下是小编收集整理的七年级数学上册教案,仅供参考,希望能够帮助到大家。
七年级数学上册教案1
教学目标
1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点
两个负数大小的比较
知识重点
绝对值的概念
教学过程(师生活动)
设计理念
设置情境
引入课题
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20|-10|=10显然|0|=0
这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体
验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律。、
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.
求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知
引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
应怎样比较两个数的大小呢。
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形.
让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习
例2,比较下列各数的'大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结
怎样求一个数的绝对值,怎样比较有理数的大小。
本课作业
1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第
(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学上册教案2
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:—3,—2,—2。7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2。7%。
五、讲授新课
(1)、像—3,—2,—2。7%这样的数(即在以前学过的0以外的数前面加上负号“—”的数)叫做负数。而3,2,+2。7%在问题中分别表示零上3摄氏度,净胜2球,增长2。7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0。5,+,…就是3,2,0。5,…一个数前面的“+”、“—”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的。海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为—155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1—2,图1.1—3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的`路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“—”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“—”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
八、作业布置
1、课本第5页习题1.1复习巩固第1、2、3题。
七年级数学上册教案3
教学目标:
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
教与学互动设计:
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的.数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()
A.3B.-3C.-2.5D.-7.45
【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈
夯实基础
1.填空题:
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;
(2)下午5时的水位比中午12时水位高多少?
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)
七年级数学上册教案4
总时:1时
第1时, 备时间:开学第十五周 上时间:第十六周
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.
2 .近似数和有效数字 并按要求取近似数.
3.从统计图中获取信息 并用统计图形象地表示数据.
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感.
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.
(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的`勇气.
二、教学重点:1.感受较小的数据.
2.用科学记数法表示较小的数.
3.近似数和有效数字 并能按要求取近似数.
4.读懂统计图 并能形象、有效地用统计图描述数据.
教学难点:形象、有效地用统计图描述数据.
教学过程:.创设情景 引入新
三.讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明.
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚.
四.时小结:我们这节回顾了以下知识:
1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据.
2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.
3.又一次欣赏了形象的统计图 并从中获取有用的信息.
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.
(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?
制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.
(1)形象统计图(略)只要合理即可.
(2)从表中的数据看出 河流越长 其流域面积越大.
(3)河流的年径流量与河流所处的位置有关系.
五.后作业:
七年级数学上册教案5
内容:整式的乘法—单项式乘以多项式 P58-59
课型:新授 时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则
学习难点:对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面 m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律吗?
4.你能尝试单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3 计算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、练一练
(1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的`值等于 ( )
A. -1 B. 0 C. 1 D. 无法确定
4、计算(20xx 贺州中考)
(-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
七年级数学上册教案6
【知识与技能】
1.了解无理数和实数的概念,会将实数按一定的标准进行分类.
2.知道实数与数轴上的点一一对应.
【过程与方法】
1.了解无理数和实数的概念,适时拓展数的观念.
2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.
【情感态度】
从分类、集合的思想中领悟数学的内涵,激发兴趣.
【教学重点】
正确理解实数的概念.
【教学难点】
对“实数与数轴上的点一一对应关系”的理解.
一、情境导入,初步认识
问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.
引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?
【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.
二、思考探究,获取新知
例1
(1)试着写出几个无理数.
(2)判断下列各数中,哪些是有理数?哪些是无理数?
《实数》课时练习含答案
1.(20xx?安徽模拟)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.下列集合为好的集合的是( )
A. {1,2} B. {1,4,7} C. {1,7,8} D. {﹣2,6}
答案:B
知识点:实数.
解析:根据题意,利用集合中的数,进一步计算8﹣a的值即可.
解:A、{1,2}不是好的`集合,因为8﹣1=7,不是集合中的数,故错误;
B、{1,4,7}是好的集合,这是因为8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的数,正确;
C、{1,7,8}不是好的集合,因为8﹣8=0,不是集合中的数,故错误;
D、{﹣2,6}不是好的集合,因为8﹣(﹣2)=10,不是集合中的数,故错误;
故选:B.
本题考查了有理数的加减的应用,要读懂题意,根据有理数的减法按照题中给出的判断条件进行求解即可.
《6.3实数》专项测试题
1、下列说法正确的是( )
A.单独的一个数或一个字母也是代数式
B.任何有理数的绝对值都是正数
C.如果两个数的绝对值相等,那么这两个数相等
D.数轴上的任意一个点都可以表示一个有理数
【答案】A
【解析】解:数轴上的点可表示为有理数和无理数。
两个数的绝对值相等,这两个数相等或者互为相反数。
绝对值是()。
2、下列说法正确是( )
A不存在最小的实数B有理数是有限小数
C无限小数都是无理数D带根号的数都是无理数
七年级数学上册教案7
教学目标
1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、
2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、
难点
识别单项式的系数和次数、
教学过程
一、创设情境,导入新课
师:出示图片、
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢?
二、推进新课
(一)用含字母的式子表示数量关系、
师:出示第54页例1、
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的.答案,但可能不会太规范,教师总结、
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、
师生共同完成例2,进一步体会用字母表示数的意义、
巩固练习:第56页练习、
(二)单项式的概念、
师:出示问题、
引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?
生:通过观察、对比、讨论得出,各式都是数或字母的积、
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式、
巩固练习:下列各式是单项式的式子是____________、
《整式的加减》同步练习
1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?
2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。
《整式的加减》单元测试卷含答案
9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()
A、ab B、a+b C、10a+b D、100a+b
【考点】列代数式、
【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、
【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、
故选D、
【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、
10、原产量n吨,增产30%之后的产量应为()
A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨
【考点】列代数式、
【专题】应用题、
【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、
【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、
故选B、
【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、
七年级数学上册教案8
教学目标
1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点
归纳相反数在数轴上表示的点的特征
知识重点
相反数的概念
教学过程
(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的`相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结
1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
1,必做题教科书第18页习题1。2第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
七年级数学上册教案9
一、教学目标
(一)认知目标
1.借助频率或考虑实验观察到的结果,区分不可能发生、可能发生和必然发生这三个概念.
2.借助频数或频率,初步体会随机事件发生的可能性是有大有小的.
(二)情感目标
让学生在解决现实问题的同时,能受到爱国主义教育,增进对数学价值的认识.
二、教学重点
正确区分“不可能”、“必然”和“可能”.
三、教学难点
怎样分清不确定的现象和确定的现象.
四、教学过程
(一)导入新课
同学们还记得抛掷硬币的游戏吗?再抛10次试一试,记录一下,看看有________次正面朝上,有_______次反面朝上.
提问:在刚才的抛掷硬币游戏中,你发现正反面同时朝上有几次?
学生回答:0次;一次也没有;不可能.
回答得很好.在我们的周围有很多事情有可能发生,也有不可能发生的.下面再请同学们拿出准备好的骰子.
(二)新授
骰子都是正方体,它有六个面,每一面的点数分别是从1到6这六个数字中的.一个.骰子的质地是均匀的,也就是说每个数字被掷得的机会都是一样的.
下面两人一组做掷骰子的游戏.
要求:一个同学掷骰子,另一个同学做记录,用“正”字法把每个点数出现的频数记录下来,填入备好的表里.掷完20次以后,两人交换角色,再记录下数据.
提问:“点数7”出现了多少次?
学生回答:0次.
从每个小组的频数表中,我们可以看到,不管如何,“点数7”出现的次数总是0.这并不是因为我们掷的时间还不够长或掷的次数还不够多,而是因为骰子上根本没有“7”.所以,无论再挪多少次,“点数7”都不会出现.我们可以说“掷得的点数是7”这件事是不可能发生的.
提问:在刚才的游戏中,还有什么事是不可能发生的?
学生进行简单讨论.
让学生自由发言:大干“点数7”的点数,像8、9都不可能发生.
那么,可能发生的事是什么呢?
七年级数学上册教案10
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的`解决培养学生分析问题和解决问题的能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
七年级数学上册教案11
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础。
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做。
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的.数并不都是有理数。
以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1、规定了原点、正方向和单位长度的直线叫做,如图1所示。
2、所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2)。
A点表示-4; B点表示-1.5;
O点表示0; C点表示3.5;
D点表示6。
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数。
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。
同理,表示是负数;反之是负数也可以表示为。
3、正常见几种错误
1)没有方向;
2)没有原点;
3)单位长度不统一。
七年级数学上册教案12
七年级上2.5有理数的减法(一)教案
教学目标:
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点运用有理数减法法则做有理数减法运算。
教学难点有理数减法法则的得出。
教具学具多媒体、教材、计算器
教学方法研讨法、讲练结合
教学过程一、引入新课:
师:下面列出的是连续四周的最高和最低气温:
第1周第二周第三周第四周
最高气温+6℃0℃+4℃-2℃
最低气温+2℃-5℃-2℃-5℃
周温差
求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的.温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:
例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题
教学过程四、练习反馈:
师:巡视个别指导,订正答案。
教学过程五、小结:
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法法则:
减去一个数,等于加上
这个数的相反数。例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
七年级数学上册教案13
垂线
[教学目标]
1。理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2。掌握点到直线的距离的概念,并会度量点到直线的距离。
3。掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1。教学重点:垂线的定义及性质。
2。教学难点:垂线的画法。
[教学过程设计]
一。复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的性质。
二。新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的`实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点P与直线l上各点O,
A,B,C,……,其中(我们称PO为点P到直线
l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,PO的长度叫做点P到直线l的距离。
例1
(1)AB与AC互相垂直;
(2)AD与AC互相垂直;
(3)点C到AB的垂线段是线段AB;
(4)点A到BC的距离是线段AD;
(5)线段AB的长度是点B到AC的距离;
(6)线段AB是点B到AC的距离。
其中正确的有()
A。 1个B。 2个
C。 3个D。 4个
解:A
例2如图,直线AB,CD相交于点O,
解:略
例3如图,一辆汽车在直线形公路AB上由A
向B行驶,M,N分别是位于公路两侧的村庄,
设汽车行驶到点P位置时,距离村庄M最近,
行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。
练习:
1。
2。教材第9页3、4
教材第10页9、10、11、12
小结:
1。要掌握好垂线、垂线段、点到直线的距离这几个概念;
2。要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;
3。垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
七年级数学上册教案14
教学目标
1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.
2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的.数集的图里.难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.
说明:我们把所有的这些数统称为有理数.
七年级数学上册教案15
教学目标
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点
1 教学重点:
掌握用整十数除的口算方法。
2 教学难点:
理解用整十数除的口算算理。
教学工具
多媒体设备
教学过程
1 复习引入
口算。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
2 新知探究
1、教学例1
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式 80÷20
(3)学生独立探索口算的方法
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
A.因为20×4=80,所以80÷20=4 这是想乘算除
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)
(6)用刚学会的方法再次口算,并与同桌交流你的想法
40÷20 20÷10 60÷30 90÷30
(7)探究估算的方法
出示:83÷20≈ 80÷19≈
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
2、教学例2
(1)创设情境引出问题
师:谁会解决这个问题?
150÷50
(2)小组讨论口算方法
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的.口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
3、估算
(1)探计估算的方法
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
3 巩固提升
1、独立口算
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2、算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3、解决问题
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40 = 6(包)
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30 = 4(个)
答:看完这本书大约需要4个月。
课后小结
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书
口算除法
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
【七年级数学上册教案】相关文章:
数学七年级上册教案04-16
[优]数学七年级上册教案06-13
七年级上册数学教案12-16
七年级数学上册教案01-11
七年级上册数学教案01-19
七年级数学上册教案06-13
七年级数学上册教案(精选)06-14
数学新七年级上册教案模板01-24
(经典)七年级数学上册教案10-19
七年级上册数学教学教案06-01