现在位置:范文先生网>教案大全>数学教案>高一数学教案>高一数学必修二教案

高一数学必修二教案

时间:2024-10-21 10:02:07 高一数学教案 我要投稿

高一数学必修二教案

  作为一名老师,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?下面是小编为大家整理的高一数学必修二教案,欢迎阅读,希望大家能够喜欢。

高一数学必修二教案

高一数学必修二教案1

  教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性。 了解有限集、无限集、空集概念,

  教学重点:集合概念、性质;“∈”,“ ?”的使用

  教学难点:集合概念的理解;

  课 型:新授课

  教学手段:

  教学过程:

  一、引入课题

  军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。

  下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

  二、新课教学

  “物以类聚,人以群分”数学中也有类似的分类。

  如:自然数的集合 0,1,2,3,……

  如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。

  如:几何中,圆是到定点的`距离等于定长的点的集合。

  1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…

  集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…

  2、元素与集合的关系

  a是集合A的元素,就说a属于集合A , 记作 a∈A ,

  a不是集合A的元素,就说a不属于集合A, 记作 a?A

  思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

  例1:判断下列一组对象是否属于一个集合呢?

  (1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母

  (5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数

  (9)方程 的实数解

  评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

  3、集合的中元素的三个特性:

  1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合

  3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  集合元素的三个特性使集合本身具有了确定性和整体性。

  4、数的集简称数集,下面是一些常用数集及其记法:

  非负整数集(即自然数集) 记作:N 有理数集Q

  正整数集 N__或 N+ 实数集R

  整数集Z 注:实数的分类

  5、集合的分类 原则:集合中所含元素的多少

  ①有限集 含有限个元素,如A={-2,3}

  ②无限集 含无限个元素,如自然数集N,有理数

  ③空 集 不含任何元素,如方程x2+1=0实数解集。专用标记:Φ

  三、课堂练习

  1、用符合“∈”或“?”填空:课本P15练习惯1

  2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”

  (1)所有在N中的元素都在N__中( )

  (2)所有在N中的元素都在Z中( )

  (3)所有不在N__中的数都不在Z中( )

  (4)所有不在Q中的实数都在R中( )

  (5)由既在R中又在N__中的数组成的集合中一定包含数0( )

  (6)不在N中的数不能使方程4x=8成立( )

  四、回顾反思

  1、集合的概念

  2、集合元素的三个特征

  其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的。

  “集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的。

  3、常见数集的专用符号。

  五、作业布置

  1、下列各组对象能确定一个集合吗?

  (1)所有很大的实数

  (2)好心的人

  (3)1,2,2,3,4,5.

  2、设a,b是非零实数,那么 可能取的值组成集合的元素是

  3、由实数x,-x,|x|, 所组成的集合,最多含( )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  4、下列结论不正确的是( )

  A.O∈N B. Q C.O Q D.-1∈Z

  5、下列结论中,不正确的是( )

  A.若a∈N,则-a N B.若a∈Z,则a2∈Z

  C.若a∈Q,则|a|∈Q D.若a∈R,则

  6、求数集{1,x,x2-x}中的元素x应满足的条件;

高一数学必修二教案2

  一、教学目标

  1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

  二、教学难点:

  重点:画出简单几何体、简单组合体的三视图;

  难点:识别三视图所表示的空间几何体。

  三、学法指导:

  观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的投影图。

  三视图:几何体的`正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15 练习1、2; P20习题1.2 [A组] 2。

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1.2 [A组] 1。

高一数学必修二教案3

  学习目标

  1、 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。

  2、 结合已学过的数学实例,了解类比推理的含义;

  3、 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。

  学习过程

  一、课前准备

  问题3:因为三角形的内角和是 ,四边形的内角和是 ,五边形的内角和是

  ……所以n边形的内角和是

  新知1:从以上事例可一发现:

  叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

  新知2:类比推理就是根据两类不同事物之间具有

  推测其中一类事物具有与另一类事物 的性质的推理。

  简言之,类比推理是由 的推理。

  新知3归纳推理就是根据一些事物的 ,推出该类事物的

  的推理。 归纳是 的过程

  例子:哥德巴赫猜想:

  观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,

  16=13+3, 18=11+7, 20=13+7, ……,

  50=13+37, ……, 100=3+97,

  猜想:

  归纳推理的一般步骤

  1 通过观察个别情况发现某些相同的性质。

  2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

  ※ 典型例题

  例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。

  变式1 观察下列等式:1+3=4= ,

  1+3+5=9= ,

  1+3+5+7=16= ,

  1+3+5+7+9=25= ,

  ……

  你能猜想到一个怎样的结论?

  变式2观察下列等式:1=1

  1+8=9,

  1+8+27=36,

  1+8+27+64=100,

  ……

  你能猜想到一个怎样的结论?

  例2设 计算 的值,同时作出归纳推理,并用n=40验证猜想是否正确。

  变式:(1)已知数列 的第一项 ,且 ,试归纳出这个数列的通项公式

  例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。

  圆的概念和性质 球的类似概念和性质

  圆的周长

  圆的面积

  圆心与弦(非直径)中点的连线垂直于弦

  与圆心距离相等的弦长相等,

  ※ 动手试试

  1、 观察圆周上n个点之间所连的`弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?

  2 如果一条直线和两条平行线中的一条相交,则必和另一条相交。

  3 如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

  三、总结提升

  ※ 学习小结

  1、归纳推理的定义。

  2、 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)。

  3、 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法

高一数学必修二教案4

  一、教学目标

  1.知识与技能:

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法:

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观:

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点:

  让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪。

  四、教学过程

  (一)创设情景,揭示课题

  1、由六根火柴最多可搭成几个三角形?(空间:4个)

  2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

  3、展示具有柱、锥、台、球结构特征的空间物体。

  问题:请根据某种标准对以上空间物体进行分类。

  (二)、研探新知

  空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

  旋转体(轴):圆柱、圆锥、圆台、球。

  1、棱柱的.结构特征:

  (1)观察棱柱的几何物体以及投影出棱柱的图片,

  思考:它们各自的特点是什么?共同特点是什么?

  (学生讨论)

  (2)棱柱的主要结构特征(棱柱的概念):

  ①有两个面互相平行;

  ②其余各面都是平行四边形;

  ③每相邻两上四边形的公共边互相平行。

  (3)棱柱的表示法及分类:

  (4)相关概念:底面(底)、侧面、侧棱、顶点。

  2、棱锥、棱台的结构特征:

  (1)实物模型演示,投影图片;

  (2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

  棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

  棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

  3、圆柱的结构特征:

  (1)实物模型演示,投影图片——如何得到圆柱?

  (2)根据圆柱的概念、相关概念及圆柱的表示。

  4、圆锥、圆台、球的结构特征:

  (1)实物模型演示,投影图片——如何得到圆锥、圆台、球?

  (2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

  5、柱体、锥体、台体的概念及关系:

  探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

  圆柱、圆锥、圆台呢?

  6、简单组合体的结构特征:

  (1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

  (2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

  (3)列举身边物体,说出它们是由哪些基本几何体组成的。

  (三)排难解惑,发展思维

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (四)巩固深化

  练习:课本P7 练习1、2; 课本P8 习题1.1 第1、2、3、4、5题

  (五)归纳整理:

  由学生整理学习了哪些内容

高一数学必修二教案5

  【考点阐述】

  两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。

  【考试 要求】

  (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式。

  (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。

  【考题分类】

  (一)选择题(共5题)

  1.(海南宁夏卷理7) =( )

  A. B. C. 2 D.

  解: ,选C。

  2.(山东卷 理5文10)已知cos(α- )+sinα=

  (A)- (B) (C)- (D)

  解: , ,

  3.(四川卷理3文4) ( )

  (A) (B) (C) (D)

  【解】:∵

  故选D;

  【点评】:此题重点考察各三角函数的`关系;

  4.(浙江卷理8)若 则 =( )

  (A) (B)2 (C) (D)

  解析:本小题主要考查三角 函数的求值问题。由 可知, 两边同时除以 得 平方得 ,解得 或用观察法。

  5.(四川延考理5)已知 ,则 ( )

  (A) (B) (C) (D)

  解: ,选C

  (二)填空题(共2题)

  1.(浙江卷文12)若 ,则 _________。

  解析:本 小题主要考查诱导公式及二倍角公式的应用。由 可知, ;而 。答案 :

  2.(上海春卷6)化简: .

  (三)解答题(共1题)

  1.(上海春卷17)已知 ,求 的 值。

  [解] 原式 …… 2分

  . …… 5分

  又 , , …… 9分

  . …… 12分 文章

【高一数学必修二教案】相关文章:

高一数学必修二教案01-20

高一数学必修二教案 7篇01-21

高一数学必修二教案 (7篇)01-22

高一历史必修二教案11-27

高一数学必修二教案 (汇编7篇)01-23

高一数学必修四教案11-13

高一语文必修二教案12-14

高二数学必修四教案11-03

高一数学必修一优秀教案12-26