现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学绝对值教案

七年级数学绝对值教案

时间:2024-10-21 12:41:45 七年级数学教案 我要投稿

七年级数学绝对值教案

  作为一位兢兢业业的人民教师,就难以避免地要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么教案应该怎么写才合适呢?下面是小编帮大家整理的七年级数学绝对值教案,希望能够帮助到大家。

七年级数学绝对值教案

七年级数学绝对值教案1

  一、重点、难点分析

  绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

  教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  绝对值的定义绝对值的表示方法用绝对值比较有理数的大小

  三、教法建议

  用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

  在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的'一种直观解释.

  此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

  四、有关绝对值的一些内容

  1.绝对值的代数定义

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.

  2.绝对值的几何定义

  在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.

  3.绝对值的主要性质

  (2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.

  (4)两个相反数的绝对值相等.

  五、运用绝对值比较有理数的大小

  1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的绝对值;

  (2)比较这两个绝对值的大小;

  (3)根据“两个负数,绝对值大的反而小”作出正确的判断.

  2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大.

七年级数学绝对值教案2

  教学目标:

  1、知识与技能:

  (1)借助数轴理解相反数的概念,会求一个数的相反数。

  (2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

  2、过程与方法:

  在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

  重点、难点

  1、重点:理解相反数的意义,会求一个数的相反数。

  2、难点:对相反数意义的理解。

  教学过程:

  一、创设情景,导入新课

  1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、—5),+5与—5这样成对出现的数就是为们今天要学习的相反数。

  二、合作交流,解读探究

  1、(出示小黑板)

  教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

  学生活动:分小组讨论,与同伴交流。

  教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示—2.6,它们只有符号不同,到原点的距离都是2.6。

  2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

  0的相反数是0。

  3、学生活动:

  在数轴上,表示互为相反数的两个点有什么关系?

  学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

  4、练习填空:

  3的相反数是;—6的相反数是;—(—3)=;—(—0.8)=;

  学生活动:在练习本上解答,并与同伴交流,师生共同订正。

  归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“—”号,也可以把“—”号一起去掉;一个正数前面有奇数个“—”号,则化简后只保留一个“—”号。

  三、应用迁移,巩固提高

  1、课本P10第1题。

  2、填空:

  (1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

  3、如果一个数的相反数是它本身,则这个数是。

  4、若α、β互为相反数,则α+β= 。

  5、—(—4)是的相反数,—(—2)的.相反数是。

  6、化简下列各数的符号

  —(—9)=;+(—3.5)= ;

  —=;—{—[+(—7)]}= 。

  7、若—x=10,则x的相反数在原点的侧。

  8、若x的相反数是—3,则;若x的相反数是—5.7,则。

  四、总结反思

  本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是—a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

  五、课后作业

  课本P13习题1.2A组第3、4题。

七年级数学绝对值教案3

  一、教学目标

  1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值。

  2.利用绝对值解决?些简单的实际问题。

  3.使学生初步了解数形结合的思想方法。

  4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值。

  二、教法设计

  通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用。

  三、教学重点和难点

  重点:初步理解绝对值的意义,会求一个有理数的绝对值。

  难点:对绝对值意义的初步理解。

  四、课时安排

  1课时

  五、师生互动活动设计

  自主、探究、合作、交流。

  六、教学思路

  (一)、导入

  1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?

  另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?

  (给学生充分的时间思考,相互讨论、探讨。)

  或:创设问题情景

  挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的距离各是多少?(激情引趣,导人新课)

  2.概念的引述.

  教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?

  (叫学生板书)

  (学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导。)

  3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?

  (在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系。)

  (二)、新知识运用

  例1:求下列各数的绝对位:(小黑板示)

  、 、0、-7.8、

  教师示范一题的解题格式,其余题目由学生独立完成。(培养学生规范化解题的良好习惯)

  四、知识拓展

  师生互动,先要求学?思考、解决,再在组内互相交流。

  1.(1)在数轴上表示下列各数:

  一1.5、一3、一1、一5.

  (2)求出以上各数的绝对值,并比较它们的大小。

  (3)你发现了什么?

  (培养学生独立思考解决问题的习惯,学会发现问题,总结规律。)

  2.如果=3.5,那么

  3.

  4.字母a表示一个正数,-a表示什么?-a一定是负数吗?

  (字母表示数的意义,为下一章的代数式做准备。)

  视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流。

  五、小结

  1.知识点:

  (1)绝对值的定义二

  (2)一个数的`绝对值与这个数的关系。

  2.数学思想方法:数形结合的思想。(培养学生总结能力)

  自我评价

  本课设计体现的几个教学理念:

  1.既注重学生的全面发展、又重视突出重点。在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的准确性、深刻性、批判性、创新性等优秀品质。

  2.突出了归纳思维方法和学生创新意识的培养。这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的。

  3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合。本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终。

  4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.

  5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师使用。

七年级数学绝对值教案4

  导学目标

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题绝对值的意义和作用。

  导学重点:

  正确理解绝对值的概念?

  导学难点:

  负数大小比较?

  导学过程

  温故:

  1、下列各数中:

  +7,—2,—8?3,0,+0?01,—,1,哪些是正数?哪些是负数?哪些是非负数?

  2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

  —3,4,0,3,—1?5,—4,2?

  链接:

  问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

  知新:

  1、什么叫绝对值?

  在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作+5=5;—3的绝对值等于3,记作。

  2、绝对值的特点有哪些?

  (1)一个正数的绝对值是;例如,4=,+7.1=。

  (2)一个负数的绝对值是;例如,-2=,-5.2=。

  (3)0的绝对值是.

  容易看出,两个互为相反数的数的绝对值。如—5=+5=5。

  练一练:1。已知||=5,求的值。

  2、填空:

  (1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;

  (3)—的.符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?

  3、填空:

  (1)符号是+号,绝对值是7的数是________;(2)符号是—号,绝对值是7的数是________;(3)符号是—号,绝对值是0?35的数是________;(4)符号是+号,绝对值是1的数是________;

  4、(1)绝对值是的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?

  (3)有没有绝对值是—2的数?

  3。理解:

  若用a表示一个数,当a是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:

  (1)如果a>0,那么a=a;

  (2)如果a<0,那么a=-a;

  (3)如果a=0,那么a=0。

  4。比较两个负数的大小

  由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大。负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小。

  练一练:比较和的大小

【七年级数学绝对值教案】相关文章:

初中数学绝对值教案12-30

七年级数学绝对值教案10-19

七年级数学《绝对值》教案09-11

(通用)七年级数学《绝对值》教案07-22

(精品)七年级数学《绝对值》教案12-11

七年级数学绝对值教案(合集)08-29

七年级数学《绝对值》教案(精选11篇)07-20

七年级数学绝对值教案(精选12篇)07-04

七年级数学上册《绝对值》教案10-16

七年级数学《绝对值》教案(通用14篇)07-21