现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级上册数学教案

六年级上册数学教案

时间:2024-10-21 15:50:55 六年级数学教案 我要投稿

(必备)六年级上册数学教案15篇

  作为一位杰出的教职工,时常需要用到教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?下面是小编帮大家整理的六年级上册数学教案,希望对大家有所帮助。

(必备)六年级上册数学教案15篇

六年级上册数学教案1

  教学内容:课本第4—6页,例2,例3及“做一做”,练习二1—4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

  1、理解一个数乘以分数的意义。

  (1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?

  指名列式,板书:

  问:表示什么意思?指名回答,板书:求3个或求的3倍。

  (2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

  指名回答:半瓶用表示;式子为:。

  说明:是求的一半是多少,也就是求的是多少。板书:求的。

  (3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?

  指名回答,板书:,问:表示什么意思?指名回答,板书:求的。

  2、引导学生小结。

  ①指出三个算式都是分数乘法,比较三个算式的不同点:

  第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的'结语。

  练习:

  课本的做一做1、2题。

  说一说下列算式的意义。

  理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  得出:根据“工作效率×工作时间=工作总量”列出式子:。

  问:如果我们用一个长方形表示1公顷,那么公顷怎样表示?

  问:公顷的是什么意思?

  要求学生观察图

  (2)问:在图中的对于1公顷来说,是1公顷的几分之几?

  引导得出:

  观察这个式子有什么特点?

  出示例3的第二个问题。

  问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?

  板书:公顷)

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。

  例:

  (3)做一做。

  三、巩固练习:练习二第1、2题。

  四、小结。

  这节课我们学习了什么内容?

  一个数乘以分数的意义是什么?

  分数乘以分数的计算方法是什么?

  五、作业。

  练习二第3、4题。

六年级上册数学教案2

  教学目标:

  1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。

  2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

  3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的'学科兴趣和学习能力。

  教学重点:

  在方格纸用数对确定位置。

  教学难点:

  利用方格纸正确表示列与行。

  教学用具:

  动物园示意图的方格纸图。

  教学过程

  一、复习导入,提出学习目标。

  1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?

  2、揭题,提出学习目标。

  让学生先说说,再出示学习目标:

  (1)方格纸上什么线表示列,什么线表示行。

  (2)利用方格纸确定物体位置的方法。

  二、展示学习成果

  1、认识方格纸的列与行。竖线是列,横线是行。

  2、自主学习,小组内展示。

  (1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)

六年级上册数学教案3

  第一单元:分数乘法

  第一课时:分数乘以整数

  教学内容:第1~2页,例1及“做一做”,练习一1-7题。

  教学目的:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1.出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  123333??????666101010

  计算333??时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加101010

  数都相同,计算时3个3连加的结果做分子,分母不变。

  2.引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1.教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:师:每人吃2块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。9

  222问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生999

  用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)2222?2?262订正时教师板书:++===(块),(教师将3个双层扇形图片拼成一个一块999939

  2蛋糕的图片)3

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数

  22的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:?3。再启发学生说出?3表99

  2示求3个相加的和。9

  2(3)比较?3和12×5两种算式异同:9

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。2不同点:?3是分数乘整数,12×5是整数乘整数。9

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2.教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。22222问:?3表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,99999

  教师板书:2?2?22?362??。提示:分子中3个2连加简便写法怎么写?学生答后板书:9993(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:2?32的分子部分、分母与算式?3两个数有什么关系?(互相讨论)99

  观察结果:2?32的分子部分2×3就是算式中的`分子2与整数3相乘,分母没有变。99

  (3)概括总结:

  2请根据观察结果总结?3的计算方法。(互相讨论)9

  22汇报结果:(多找几名学生汇报)使学生得出?3是用分数的分子2与整数3下乘的积99

  作分子,分母不变。

  2根据?3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得9

  2的数要与原数上下对齐。然后让学生将?3按简便方法计算。9

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3.反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  3333???=()×()4444

  3个13是多少?5个是多少?1010

  订正时让学生说一说为什么这样列式。

  (3)计算:

  25?4?81512

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

  第二课时:一个数乘以分数

  教学内容:课本第4-6页,例2,例3及“做一做”,练习二1-4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  153?5?1?21087

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)1.理解一个数乘以分数的意义。3(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?5

  3指名列式,板书:?35

  333问:?3表示什么意思?指名回答,板书:或求的3倍。555

  3(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?5

  指名回答:半瓶用131表示;式子为:?。252

  3133131说明:?是求的一半是多少,也就是求的是多少。板书:求的。5255252

  32(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?53

  323232指名回答,板书:?,问:?表示什么意思?指名回答,板书:求的。535353

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  .课本的做一做1、2题。

  .说一说下列算式的意义。533?8?754

  3.理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  11得出:根据“工作效率×工作时间=工作总量”列出式子:?。25

  问:如果我们用一个长方形表示1公顷,那么

  学生回答后,教师出示例3的图(1)11问:公顷的是什么意思?251公顷怎样表示?2

  出示例3图(2)

  要求学生观察图(2),问:在图中

  111?11?引导得出:??252?51011的对于1公顷来说,是1公顷的几分之几?25

  观察这个式子有什么特点?

  出示例3的第二个问题。

  学生列式,教师再出示例3图(3)11131问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?252?525

  131?33?板书:??公顷)252?510

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。323?22?例:??535?35

六年级上册数学教案4

  六年级上册数学三单元知识

  1.认识倒数

  (1)倒数的意义:乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。

  (2)求一个数的倒数

  ①求分数的倒数:交换分子和分母的位置即可。

  ②求整数的倒数(0除外):先把整数看作分母是1的假分数,然后交换分子、分母的位置即可。

  ③求小数的倒数:先把小数化成分数,再交换分子、分母的位置。

  2.分数的除法

  (1)分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)分数除法的计算:一个数除以一个不为0的数,等于乘这个不为0的数的倒数。

  (3)分数的四则混合运算:与整数的四则混合运算的运算顺序相同。

  ①先乘除,后加减;

  ②如果有括号,要先算括号里面的。

  (4)解决问题,这里主要包含三种类型的题。

  ①已知一个数的几分之几是多少,求这个数。

  方法一:设单位“1”的量为x,然后列方程解答。

  方法二:已知量÷已知量占单位“1”的几分之几=单位“1”的量。

  ②已知比一个数多(或少)几分之几的数是多少,求这个数。

  方法一:设单位“1”的量为x,然后列方程解答,所依据的数量关系是,单位“1”的量×(1 ±几分之几)=已知量。

  方法二:先确定单位“1”的量,计算出已知量占单位“1”的.几分之几,再根据分数除法的意义列式解答。

  ③已知两个数的和或差以及这两个数之间的倍数关系,求这两个数。

  先找出单位“1”的量并设为x,用含有x的式子表示出另一个量,再根据两个数的和或差列方程解答。

  (5)工程问题

  工作总量=工作效率×工作时间

  工作效率=工作总量÷工作时间

  工作时间=工作总量÷工作效率

  六年级上册数学三单元知识2

  1.分数除法计算

  (1)分数除法的意义和分数除以整数

  知识点一:分数除法的意义

  整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

  已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。

  的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。

  分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  知识点二:分数除以整数的计算方法

  把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

  分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  (2)一个数除以分数

  知识点一:一个数除以分数的计算方法

  一个数除以分数,等于这个数乘分数的倒数。

  知识点二:分数除法的统一计算法则

  甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  知识点三:商与被除数的大小关系

  一个数(0除外)除以小于1的数,商大于被除数。除以1,商等于被除数。除以大于1的数,商小于被除数。

  0除以任何数商都为0

  (3)分数除法的混合运算

  知识点一:分数除加、除减的运算顺序

  除加、除减混合运算,如果没有括号,先算除法,后算加减。

  知识点二:连除的计算方法

  分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

  如何学好小学数学的方法

  一、恰当的学习方法和学习习惯

  1、做好课前预习,掌握听课主动权。

  课前准备的好坏,直接影响听课的效果。

  2、专心听讲,做好课堂笔记。

  3、及时复习,把知识转化为技能。

  4、认真完成作业,形成技能技巧,提高分析解决问题的能力。

  5、及时进行小结,把所学知识条理化、系统化。

  因此,我们今后还要保持“先预习、后听讲;先复习、后作业;经常进行阶段小结”的好习惯。

  二、良好的学习动机和学习兴趣

  学习动机是推动你们学习的直接动力。华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因而,也就会挤时间来学习了。”我很高兴你们能够喜欢数学课,我希望你们在数学的学习中获得更多乐趣。

  三、坚强的意志

  在学习数学的过程中,你们遇到过许多大大小小的困难,你们能坚定信心,勇敢地面对困难,战胜困难,这需要坚强的意志。满怀信心地迎接困难,奋力拼搏战胜困难,就是意志坚韧的表现。你们具有这种十分可贵的品质,在学习遇到困难或挫折时,就会不灰心丧气;在取得好成绩时,也不骄傲自满,而是善于总结经验教训,探索学习的规律和方法,奋勇前进。这样才取得了好成绩。

  四、自信心与勤奋

  数学家张广厚说:“在学习数学的道路上没有任何捷径可走,更不能投机取巧,只有勤奋地学习,持之以恒,才会得到优秀的成绩。”你们懂得“熟能生巧”的道理,经过反复练习,你们确实取得好成绩了吧!

  五、能做到沉稳冷静的备考

  用良好的心态面对考试做到沉稳冷静的备考是非常有必要的,在考试前不心浮气躁可以让你高速而有质量的复习。另外,用积极的心态去面对考试,能让你发挥正常水平甚至超水平发挥。

六年级上册数学教案5

  【教学内容】

  教材50、51页及练习十一的4-8题

  【教学目标】

  知识与技能:

  1.理解比的基本性质.

  2.正确应用比的基本性质化简比.

  过程与方法:

  培养抽象概括能力;

  情感、态度与价值观;

  渗透转化的数学思想。

  【教学重难点】

  重点:理解比的基本性质,正确的化简比。

  难点:正确应用比的基本性质化简比。

  【导学过程】

  ⊙复习铺垫

  1.什么叫两个数的比?(两个数的比表示两个数相除)

  2.比与分数、除法有什么关系?(引导学生明确:比相当于分数、相当于除法;比的前项相当于……可以结合算式或表格回答)

  3.商不变的性质和分数的基本性质各是什么?[商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变]

  设计意图:回顾比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。

  ⊙探究新知

  1.导入新课。

  (1)课件出示:

  (2)这三个分数的大小相等吗?为什么?(相等,因为它们的分数值都是0.75)

  (3)还有其他方法可以证明它们的大小相等吗?怎样证明?(有,根据分数的基本性质,和都可以化成,所以它们的大小相等;根据分数和除法的关系以及商不变的性质也可以证明这三个分数的大小相等)

  (4)在除法中有商不变的性质,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题)

  2.探究比的基本性质。

  (1)把改写成比的形式。(引导学生汇报并用课件展示:=3∶4;=6∶8;=12∶16)

  (2)探讨这三个比之间的关系,用算式表示出来,并说明理由。(3∶4=6∶8=12∶16,比值都是0.75)

  (3)观察、比较、发现。

  观察每个比的前项和后项的变化过程及规律。(结合学生的汇报,用课件展示相关内容)

  6÷8=(6×2)÷(8×2)=12÷16

  ↓ ↓ ↓

  规律:比的前项和后项同时乘相同的数,比值不变。

  6∶8=(6÷2)∶(8÷2)=3∶ 4

  ↓ ↓ ↓

  6÷8=(6÷2)÷(8÷2)=3 ÷ 4

  规律:比的前项和后项同时除以相同的数,比值不变。

  (4)归纳总结。

  ①试用一句话概括上面三个比的变化规律。(比的前项和后项同时乘或除以相同的数,比值不变)

  ②讨论:同时乘或除以的相同的数可以是0吗?为什么?(不可以是0,因为除以0没有意义)

  ③归纳总结比的基本性质。

  比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  设计意图:先提出问题,调动学生思考问题的积极性,再由提出的问题,引发横向思维,建立各知识点间的联系,最后通过观察、比较、思考、发现,逐渐完善比的基本性质,帮助学生养成比较完善的思维习惯。

  3.应用比的基本性质。

  (1)探究整数比的化简方法。

  ①PPT课件出示教材50页例1(1)小题:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,这两面联合国旗长和宽的最简单的整数比分别是多少?

  ②明确什么是最简单的整数比。[前项和后项是互质数(只有公因数1)的比叫最简单的整数比]

  ③探究15∶10和180∶120的化简方法。

  除以前项和后项的最大公因数:

  15∶10=(15÷5)∶(10÷5)=3∶2

  180∶120=(180÷60)∶(120÷60)=3∶2

  小结:化简整数比,可以把比的前项和后项同时除以它们的最大公因数。(板书:整数比的化简)

  (2)探究分数比和小数比的化简方法。

  ①PPT课件出示教材51页例1(2)小题:把下面各比化成最简单的整数比。

  0.75∶2

  ②探究分数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘它们分母的最小公倍数18,才能化成最简单的整数比)

  A.用乘最小公倍数的方法

  B.用求比值的方法=3∶4=3∶4

  ③探究小数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘相同的数,使它们转化成整数比。如果这时还不是最简单的'整数比,要再除以前项和后项的最大公因数,化成最简单的整数比)

  先化成整数比,再化简。

  0.75∶2=(0.75×100)∶(2×100)=75∶200=(75÷25)∶(200÷25)=3∶8

  小结:用求比值的方法化简分数比时,要注意化简比与求比值的不同,无论是分数比的化简还是小数比的化简,化简比的结果仍要写成比的形式,而不能写成小数或整数的形式。(板书:分数比的化简,小数比的化简)

  (3)总结。

  化简比的依据是比的基本性质,化简比的方法不是唯一的,要注意的是,化简后仍是比的形式。

  设计意图:在弄清比的基本性质的基础上,引导学生探索各类比的化简方法,结合实例,总结出各类比的化简方法,培养学生的概括能力。

  ⊙巩固练习

  1.判断。

  (1)比的前项和后项同时乘或除以相同的数,比值不变。(  )

  (2)4∶0.25化简后的结果是16。(  )

  (3)从学校走到图书馆,小明用了8分钟,小红用了10分钟,小明和小红的速度比是4∶5。(  )

  2.填空。

  16∶200=(  )∶(  )=(  )∶(  )=

  (  )∶(  )=(  )∶(  )=(  )∶(  )。

  (独立尝试后交流,汇报时说明理由,第2题答案不唯一,只要和16∶200的比值相等就是正确的)

  3.完成教材51页“做一做”。

  ⊙课堂总结

  本节课你有什么收获?

  ⊙布置作业

  教材53页4、5题。

  板书设计

  比的基本性质

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

六年级上册数学教案6

  教学内容:

  课本第51页练习八第5-9题。

  教学目标:

  1、沟通分数除法与乘法应用题之间的关系,进一步掌握分数应用题的数量关系。

  2、运用所学的知识解决生活中的实际问题,进一步提高学生解决问题的能力。

  教学重点:

  鼓励学生用多种方法探究解决问题。

  教学难点:

  进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯。

  课前准备:

  小黑板

  教学过程:

  一、基本练习

  1、口算。

  1/4÷5/8 1/2÷4/5 5/6÷1/2 4/5÷1/5

  2、分析数量关系。

  (1)出示,在小组里说说数量之间的关系。

  ①男生的人数是女生的4/5

  ②一桶油,用去了3/8

  (2)汇报交流,师板书数量关系式。

  ①男生的人数×4/5=女生的人数

  讨论:如果知道男生的人数,怎么求女生的人数?

  如果知道女生的人数,怎么求男生的.人数?

  ②方法同上。

  二、综合练习

  1、做练习八第6题。

  画出题目中的关键句,并说出数量关系。

  根据数量关系说一说,这题是已知什么求什么,怎么解答?各自解答,并指名板演。

  2、做练习八第7题。

  说出数量关系式,并列式解答。

  3、分析练习八第8题。

  (1)这两题的关键句分别是什么,在书上画出来。

  (2)在小组中说出数量关系式。

  (3)比较,这两题有什么不一样?

  三、课堂总结

  通过今天的学习,你有什么收获?

  四、布置作业

  练习八第5、9题。

  教学反思:

六年级上册数学教案7

  学习内容

  教科书第55页例3及课堂活动第3题,练习十五第8~11题。

  育人目标

  1.学会借助线段图等方法分析较为复杂的现实问题。

  2.能考虑现实情况应用不同的策略解决问题,掌握一些策略性的知识。

  3.培养学生的发散思维能力,形成解决问题的基本策略,以及团队协调合作的能力,同时对学生进行诚信教育。

  4.在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  掌握一些解决问题的方法和策略性的知识。

  学习评价设计

  1.学生在思考、讨论中归纳出按比例分配解决问题的方法。

  2.运用归纳的知识解决实际问题。

  教学过程

  情境引入

  1.同学们,在日常生活中常会出现团队合作的情况。(让学生先简要交流课前了解的信息:人们一起合伙运货、租房等,如何协调付费的情况。)

  2.教师用课件呈现:三人需要用同一辆车运送同样多的货物共需90元,当车走到路程三分之一处,出现甲卸货,到路程的三分之二处,出现乙卸货,到终点是丙卸货。

  教师提出问题:他们如何分摊运费?请学生提出自己的想法。

  学生可能会提出:

  ①们运的货物同样重,把运费平均分配。

  ②尽管他们的货物一样重,但因为他们运的路程不一样。甲运的路程短应该少付,丙运的路程长应该多付。

  ③按照路程的长短按比例分配的办法来分摊运货的钱。

  ④能不能把运费分成每段30元,第一段由三人共同分担,第二段由乙和丙两人分担,第三段只有丙一个人承担,这样比较公平。

  ……

  以上方案中你认为哪一种比较公平?

  学生经过讨论会认为:平均分的方案不公平,因为甲运的路程短,却要和路程最长的丙付同样多的钱,这种方案在现实中不容易被接受。按比例分配或按每段路程来分摊钱的办法可以让运货路程短的付较少的钱,而运货路程长的付较多的钱,这样相对比较公平。

  抽生交流课前了解的信息。

  学生提出自己的想法

  讨论交流哪些方案才是公平的。

  在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  合作探究

  1.请选择自己认为比较公平的办法,把解决问题的方案和结果写出来。

  教师巡视,给予指导。

  2.交流汇报,展示学生解决问题的方案,要求汇报时阐明自己的.解题思路。

  方法1:按路程比例分摊。把路程平均分成三段,甲行了一段付一份钱,乙行了两段路程付两份钱,丙行了三段路程应付三份钱。

  根据各人所行路程的段数,把钱一共分成:1+2+3=6(份)。

  其中甲占90的:90×1/6=15(元)

  乙占90的:90×2/6=30(元)

  丙占90的:90×3/6=45(元)

  答:甲应分摊15元的运费,乙应分摊30元的运费,丙应分摊45元的运费。

  方法2:按路程段数分摊。

  每一段的运费:90×1/3=30(元)

  第一段的运费甲、乙、丙三人分摊:

  30÷3=10(元),每人付10元。

  第二段运费由乙、丙两人分摊:

  30÷2=15(元),每人付15元。

  第三段运费由丙一人付30元。

  所以三人分摊的运费是:

  甲:10元

  乙:10+15=25(元)

  丙:10+15+30=55(元)

  答:甲应分摊10元的运费,乙应分摊25元的运费,丙应分摊55元的运费。

  3.对方案中存在的疑问可以组织学生进行辩论:如果你是甲,你会接受哪种方案?为什么?如果你是丙呢?

  独立设计公平的分摊方案。

  交流不同的解题思路。

  讨论交流,体验实际意义。

  在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  巩固应用

  1.课件出示情境。

  小强家房子出租给小李、小张、小王三个年轻人,每月房租是630元。6月份,小李只住到10日就搬走了,小张只住到20日也搬家了,小李和小张离开时都留给小王210元的房租。到月底小强的妈妈要去收房租了,如果你是小强,你会建议妈妈怎样收这三个年轻人的房租比较合理?

  由学生先提出方案,然后自己拟订方案解答。

  方法1:

  小李应付的房租:630×10/30x1/3=105(元)

  小张应付的房租:630×(10/30x1/3+10/30x1/2=210(元)

  小王应付的房租:630×(10/30x1/3+10/30x1/2+10/30)=315(元)

  方法2:

  630÷3=210

  小李:210÷3=70(元)

  小张:70+210÷2=175(元)

  小王:70+210÷2+210=385(元)

  请学生再思考:如果你是小王,你会怎样付房租?

  同时对学生进行诚信教育。

  2.课件出示:在方格纸上涂色设计图案(课堂活动第3题)。

  学生读懂题意后,让学生自选颜色,设计图案。然后再算出各种颜色所涂格子数的比,这样就把问题归结到按比例分配的问题上来,然后让学生自己去解决。

  先提出方案,然后自己拟订方案解答,最后全班交流自己分摊方法。

  讨论交流。

  独立理解题意,自选颜色设计图案并解答。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感,对学生进行诚信教育。

  课堂小结

  今天你学到了哪些解决问题的办法?

  谈收获。

  课堂作业

  练习十五第8~11题。

  思考题:参加比赛的人数应该是7的倍数(3+4=7),又因为参加比赛人数在160-170人之间,所以参加比赛的人数可能是161人或168人。

  独立完成。

六年级上册数学教案8

  生活中的比练习课

  教学内容:生活中的比练习,完成课本第51页的第3题和实践活动。

  教学目的:

  1、进一步理解比的意义,能正确读写比,会求比值,理解比与除法、分数的关系。

  2、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

  3、体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,

  并可以借助数学语言来表述和交流。

  教学重、难点:利用比的知识解释一些简单的生活问题。

  教学具准备:课件,学生准备软尺。

  教学过程:

  一、说一说

  说一说你对比有哪些了解?

  二、基础练习

  (一)填一填。

  1、甲、乙两种方砖,边长分别是80厘米、30厘米.它们边长的比是():();它们个

  积的比是():().

  12、一辆汽车小时行驶20千米.这辆汽车行驶的路程与所用时间的比是():(),比5

  值是().

  3、美术小组男生人数和女生人数相等,男生人数与女生人数的比是():().

  4、小明家养15只鸡,5只鸭。鸡和鸭的只数比是():(),比值是(),

  表示()是()的()。鸭和鸡的只数比是():(),比值是(),表示()是()的()。

  85、=():()=()÷() 9

  16、():()==()÷6=6÷() 3

  (二)对还是错.

  1、六(1)班男生和女生的人数比是24:23,那么女生和男生的人数比是23:24.()

  2、甲数除以乙数的商是2,甲数和乙数的比是3:2.() 3

  3、一个长方形的长和宽的`比是2:3,就是说这个长方形的长是2分米,长是3分米.

  4、小红的身高是1米,妈妈的身高是158厘米,那小红和妈妈的身高比是1:158.

  5、糖和水的重量比是1:50,糖是糖水的

  (三)求比值

  28226:390.25:1.21::250克:1.2千克39151.() 50

  (四)练一练

  课本第51页的第3题。

  1.独立思考、组内讨论、汇报交流

  2.独立思考后交流

  说说比和比值有什么区别?(引导学生正确区分比和比值)

  3.说说你有什么发现?(引导学生发现比值越小,坡度越平缓。)

  三、实践活动

  量一量,找出你身体上的“比”。

  组内合作测量、写出找到的比并计算比值、汇报交流。

  四、拓展知识

  教师介绍黄金分割比。展示雅典古城的巴台农神庙和它的剖个图。

  五、全课总结

  对比你又有什么新的认识?

  六、布置作业。

  在教室里,找一找“比”,与同伴说一说

  教学反思

六年级上册数学教案9

  第一单元

  长方体和正方体

  第5课时

  体积与容积(1)

  教学内容:

  课本第10--11页例6、例7,“试一试”和“练一练”,练习三第1-4题。

  教学目标:

  1、让学生经历观察、操作、猜测、验证等活动过程,体会物体是占有空间的,而且占有的空间是有大小的,理解体积和容积的意义,能直观比较物体体积或容器容积的大小。

  2、让学生在学习活动中进一步发展观察、操作和想象能力,增强空间观念。

  教学重难点:

  通过操作活动,初步认识体积和容积的意义。

  课前准备:

  直尺,木条。

  教学过程:

  一、教学例6

  1、通过实验,让学生体会到物体是占有空间的。

  教师按书中过程操作。问:为什么会剩一些水?引导学生认识到桃子占有一定的空间。

  如果改用其它的物体呢?再实验。

  小结:通过刚才的实验,我们发现物体是占有空间的。

  2、通过实验使学生体会到物体所占的空间是有大小的。

  出示两个完全一样的玻璃杯,边操作边讲述:一个里边放荔枝,一个里边放桃。想一想:哪个里面放的水会多些?

  学生自由发表意见。

  想一想,两个杯里都装了物体,为什么倒进去的水有多有少呢?

  学生交流。

  小结:物体不仅占有空间,而且占有的空间是有大有小的。

  3、揭示体积的含义。

  出示3个大小不同的水果,问:哪个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?

  学生独立思考后让同组的.同学交流。

  通过刚才的三次活动,你有什么感受?

  教师在学生交流的基础上揭示体积的含义,并让学生举例。

  二、教学例7

  1、出示两个大小不同的书盒子,拿出书盒里的书,问:你能看出哪个盒子里的书的体积大一些吗?

  教师讲述容积的含义,并问:这两个盒子,哪个的容积大,为什么?

  2、完成“试一试”。

  同桌交流,指名回答。

  三、巩固提高

  1、完成“练一练”第1、2题.

  先做第1题:直接判断,并让学生从体积、容积的含义上说明原因。再做第2题,让学生从容积的含义上进行解释。

  2、完成练习三第1-4题

  四、课堂总结:

  让学生自己说一说这节课所学到的知识。

六年级上册数学教案10

  教学内容:教材65—66页。

  教学目标:

  1、使学生进一步掌握圆的周长公式,会根据圆的周长求出圆的直径或半径,并能运用公式解决相关的实际问题。

  2、培养学生逻辑推理能力。

  教学重点:根据圆的周长求出圆的`直径或半径,并能运用公式解决相关的实际问题。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、情景引入,回顾再现

  1、同学们,我们研究了圆的周长问题,今天这节课我们就利用圆周长公式灵活解决实际问题。

  2、提问:什么是圆的周长?圆的周长计算公式是什么?

  二、分层练习,强化提高

  1、计算下图的周长

  2、一辆自行车,车轮直径约是66厘米,如果平均每分钟转100圈,从家到学校的路程是20xx米,大约需要多少分钟?让学生讲解题过程,集体订正。

  3、练习十四第1题。独立完成。

  4、练习十四第2题。需要根据步长×步数求出直径,然后再计算圆的周长。

  5、练习十四第3题。已知周长求直径,让学生先把周长公式变形,再求直径。

  6、练习十四第10题。让学生发现大圆的半径恰好是小圆的直径,整个图形周长是大的半圆长度与两个小的半圆长度之和。

  三、自主检测、评价完善

  1、判断。

  (1)一个圆的周长总是它的直径的π倍。

  (2)圆的周长是6、28厘米,它的半径是2厘米。

  (3)圆周长的一半与半个圆的周长相等。

  2、选择:

  (1)车轮滚动一周,所行路程是求车轮的()

  ①半径②直径③周长

  (2)A圆的直径是6厘米,B圆的直径是2分米,圆周率()

  ①A圆大②B圆大③一样大

  3、练习十四7题:看图填空。

  4、练习十四5、6、8、9题。

  第9题是组合图形,半圆的直径即是正方形的边长。

  四、归纳小结,课外延伸

  今天我们学习了哪些内容?你有哪些收获?

六年级上册数学教案11

  教学内容:教材67—68页。

  教学目标:

  1、使学生理解内接正方形和外切正方形的含义,掌握圆与内接正方形、外切正方形之间面积的计算方法。

  2、经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。

  教学重点:掌握圆与内接正方形、外切正方形之间面积的计算方法。

  教学难点:在解决问题的基础上发现数学规律。

  教学过程:

  一、创设情景,生成问题

  1、计算下面各圆的面积

  r=8dm r=12cm d=4m

  2、填表

  二、探索交流,解决问题

  (一)学习例3

  1、仔细观察:什么是内接圆和外切圆,它们都有什么特征?

  2、正方形的边长与圆的半径有什么关系?

  3、学生尝试解决外切正方形与圆之间的面积。

  (1)通过观察,学生容易看出,正方形的边长就是圆的直径。

  (2)它们之间的面积=正方形面积—圆的面积

  (3)学生独立计算,集体订正。

  4、解决内接正方形与圆之间的面积。

  (1)怎样求内接正方形与圆之间的面积?

  学生不难发现:圆的面积—正方形的面积

  (2)那正方形的面积怎样求?

  观察提示:转化成2个三角形

  (3)学生尝试解决

  5、回顾与反思:形成一般性的.结论。

  当r=1m时,和前面的结果完全一致。

  (二)生活中的数学

  学生阅读教材70页资料,了解圆形在生活中的应用。

  三、巩固应用,内化提高

  1、完成“做一做”、独立解决。

  2、完成练习十五的第5—9题。

  (1)第5题:求圆环的面积

  (2)第6题:大圆的面积—小圆的面积

  (3)第7题:

  a、观察图形,明确什么是周长,什么是面积?

  b、分别说出这里的周长包含哪些长度,面积包含哪几个部分?

  c、学生独立列式解答。

  (4)第8题:小组合作完成

  (5)第9题:圆的面积—中间正方形的面积

  四、回顾整理,反思提升

  说一说这节课的收获。

六年级上册数学教案12

  第三单元 分数除法

  第6课时 分数连除和乘除混合

  教学内容:

  课本第50页例6、“试一试”和“练一练”,练习八第10-13题。

  教学目标:

  1、结合生活中具体的情景使学生经历探索分数乘除混合运算的计算方法的过程。

  2、能正确解答分数连除或分数乘除混合运算的式题。

  教学重点:

  正确进行分数连除或分数乘除混合运算。

  教学难点:

  使学生经历探索分数乘除混合运算的计算方法的过程。

  课前准备:

  小黑板

  教学过程:

  一、复习引入

  上节课我们学习了用方程解答简单的分数除法应用题,这节课我们学习分数连除和乘除混合运算。(揭示课题)

  二、教学例6

  1、出示例6中的条件,引导理解题意。

  (1)读题,理解题意。

  (2)从题目中我们可以知道哪些信息?这些信息之间有什么关系?通过信息的`组合,我们又可以获得什么新的信息?

  2、讨论解决问题的策略。

  (1)出示要解决的问题:3盒果汁可以倒多少杯?

  (2)怎么解决这个问题呢?自己先想一想,看能不能把结果算出来。

  (3)交流:你是怎么想的?先算的是什么?

  ①如果先求3盒一共有多少升,怎么想?怎么算?

  板书:4/5×3=12/5(升) 12/5÷3/10=8(杯)

  ②如果先求一盒能装几杯呢?

  板书: 4/5÷3/10 =8/3(杯) 8/3×3=8(杯)

  3、这题如果列综合算式怎么列?

  (1)各自尝试列式。

  (2)指名汇报,根据学生的汇报板书:

  4/5×3÷3/10 4/5÷3/10×3

  让学生在书上完成计算,并指名板演。

  4、教学“试一试”。

  (1)出示: 5/8÷3/4÷5/7 ,这题是分数连除,怎么算?

  (2)学生在书上独立计算后讨论算法,师板书计算过程。

  5/8÷3/4÷5/7=( )×( )×( )=( )

  5、讨论:分数连除或乘除混合运算可以怎么计算?

  (1)在小组中说一说。

  (2)全班交流。

  明确:计算分数连除或乘除混合运算时,先要把其中的除法转化为乘法,再按照分数连乘的方法进行计算。

  三、巩固练习

  1、做“练一练”。

  各自练习,并指名板演,然后评议矫正。

  出示题目,比一比,看谁解得又对又快。

  2、讨论练习八第11、12题中的数量关系。

  (1)画出各题中的关键句。

  (2)说说每题中关键句中的分数是什么意思,并说出数量关系式。

  (3)完成练习八第13题。

  各自练习后,将计算的结果填在书上。

  交流:你是分别根据什么计算出各个洲的面积的?

  四、课堂总结

  这节课学习了什么?你有什么收获?

  五、布置作业

  练习八第10题。

  教学反思:

六年级上册数学教案13

  一、分数乘法

  (一)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

  (整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (二)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (三)、分数混合运算的运算顺序和整数的运算顺序相同。

  (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a × b = b × a

  乘法结合律: ( a × b )×c = a × ( b × c )

  乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

  二、分数乘法的解决问题

  (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

  1、找单位“1”:

  在分率句中分率的前面; 或 “占”、“是”、“比”的后面

  2、求一个数的几倍:

  一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

  3、写数量关系式技巧:

  (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

  (2)分率前是“的”: 单位“1”的量×分率=分率对应量

  (3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

  三、倒数

  1、倒数的意义:

  乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1;

  0没有倒数。 因为1×1=1;0乘任何数都得0, (分母不能为0)

  4、对于任意数

  ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;

  5、真分数的倒数大于1;

  假分数的倒数小于或等于1;带分数的倒数小于1。六年级上册数学人教版知识2

  分数除法

  一、分数除法

  1、分数除法的意义:

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:

  除以一个不为0的数,等于乘这个数的倒数。

  3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

  (2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

  4、“

  ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

  二、分数除法解决问题

  (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

  1、数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是“的”: 单位“1”的量×分率=分率对应量

  (2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

  2、解法:(建议:最好用方程解答)

  (1)方程: 根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

  3、求一个数是另一个数的几分之几:就

  一个数÷另一个数

  4、求一个数比另一个数多(少)几分之几:

  ① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数

  或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数

  六年级上册数学人教版知识3

  比和比的应用

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  比的前项除以后项所得的商,叫做比值。

  例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)

  ∶ ∶ ∶ ∶

  前项 比号 后项 比值

  3、比可以表示两个相同量的关系,即倍数关系。

  也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比 前 项 比号“:” 后 项 比值

  除 法 被除数 除号“÷” 除 数 商

  分 数 分 子 分数线“—” 分 母 分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  ①用比的.前项和后项同时除以它们的最大公因数。

  (1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

  ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

  (2)用求比值的方法。注意: 最后结果要写成比的形式。

  如: 15∶10 = 15÷10 = = 3∶2

  5.按比例分配:把一个数量按照一定的比来进行分配。

  这种方法通常叫做按比例分配。

  如: 已知两个量之比为 ,则设这两个量分别为 。

  6、路程一定,速度比和时间比成反比。

  (如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

  六年级上册数学人教版知识4

  圆的面积

  1、圆的面积:圆所占平面的大小叫做圆的面积。

  用字母S表示。

  2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

  顶点在圆心的角叫做圆心角。

  3、圆面积公式的推导:

  (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

  (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

  (3)、拼出的图形与圆的周长和半径的关系。

  圆的半径 = 长方形的宽

  圆的周长的一半 = 长方形的长

  因为: 长方形面积 = 长 × 宽

  所以: 圆的面积 = 圆周长的一半 × 圆的半径

  S圆 = πr × r

  圆的面积公式: S圆 = πr2

  4、环形的面积:

  一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

  S环 = πR?-πr?  或

  环形的面积公式: S环 = π(R?-r?)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

  而面积扩大或缩小的倍数是这倍数的平方倍。 例如:

  在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

  6、两个圆:

  半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:

  两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

  反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  9、确定起跑线:

  (1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

  (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

  (3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度

  (4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  11、常用各π值结果:

  π = 3.14

  2π = 6.28

  3π = 9.42

  5π = 15.7

  6π = 18.84

  7π = 21.98

  9π = 28.26

  10π = 31.4

  16π = 50.24

  36π = 113.04

  64π = 200.96

  96π = 301.44

  4π = 12.56 8π = 25.12 25π = 78.5

  六年级上册数学人教版知识5

  一、认识圆

  1、圆的定义:圆是由曲线围成的一种平面图形。

  2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

  一般用字母O表示。它到圆上任意一点的距离都相等.

  3、半径:连接圆心到圆上任意一点的线段叫做半径。

  一般用字母r表示。

  把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、直径:通过圆心并且两端都在圆上的线段叫做直径。

  一般用字母d表示。

  直径是一个圆内最长的线段。

  5、圆心确定圆的位置,半径确定圆的大小。

  6、在同圆或等圆内,有无数条半径,有无数条直径。

  所有的半径都相等,所有的直径都相等。

  7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的

  。

  用字母表示为:d=2r或r =

  8、轴对称图形:

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

  折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

  9、长方形、正方形和圆都是对称图形,都有对称轴。

  这些图形都是轴对称图形。

  10、只有1一条对称轴的图形有:

  角、等腰三角形、等腰梯形、扇形、半圆。

  只有2条对称轴的图形是: 长方形

  只有3条对称轴的图形是: 等边三角形

  只有4条对称轴的图形是: 正方形;

  有无数条对称轴的图形是: 圆、圆环。

  二、圆的周长

  1、圆的周长:围成圆的曲线的长度叫做圆的周长。

  用字母C表示。

  2、圆周率实验:

  在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

  发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

  3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

  用字母π(pai) 表示。

  (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

  圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

  (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

  (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  4、圆的周长公式:

  C= πd d = C ÷π

  或C=2π r r = C ÷ 2π

  5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

  在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  6、区分周长的一半和半圆的周长:

  (1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r

  (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r

  六年级上册数学教案人教版2

  六年级上册数学书习题为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

  数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从各种各样的习题中就可以很好的体现出来。以上就是小编为大家梳理归纳的知识,希望能够够帮助到大家。

  六年级上册数学书习题及答案

  1.按照图上所示的位置填空。

  (1)游泳馆在小文家的北偏____方向,距离是___米;

  (2)电影院在小文家的东偏___°方向,距离是_____米。

  (3)图书馆在小文家的____偏_____方向,距离是_____米;

  (4)百货超市在小文家的_____偏______°方向,距离是_____米。

  2、找到每个建筑物的位置。

  (1)体育馆在学校的北偏_____°方向,距离是_____米;

  (2)新华书店在学校的___偏10°方向,距离是_____米;

  (3)李小旭家在学校的_____偏____°方向,距离是____米;

  (4)百货大楼在学校的____偏_____°方向,距离是_____米。

  3.量一量,填一填。

  (1)疯狂老鼠在喷泉___偏____°的方向上,距离是___米;

  (2)空中飞车在喷泉___偏___°的方向上,距离是___米;

  (3)时间隧道在喷泉____偏___°的方向上,距离是____米;

  (4)碰碰车在喷泉____偏____°的方向上,距离是___米。

  4.按要求画出各景点位置。

  (1)鳄鱼潭在大象馆西偏南40°方向,距离300米;

  (2)熊猫馆在大象馆北偏西15°方向,距离200米;

  (3)花果山在大象馆东偏北60°方向,距离500米。

六年级上册数学教案14

  学习内容

  教科书第54页例1,课堂活动第1题,练习十五第1~3题。

  育人目标

  1.在实际情境中理解按比例分配的意义。掌握按比例分配解决问题的方法,能正确解决简单的按比例分配的问题。

  2.经历探索按比例分配解决问题方法的产生过程,培养学生的分析问题、解决问题的能力。

  3.通过自主学习等活动发展学生自主探究的意识,渗透转化的数学思想,并从中感受数学与生活的密切联系。

  4.在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  1.能正确运用按比例分配的方法解答简单的数学问题。

  2.正确解决按比例分配的实际问题。

  学习评价设计

  1.学生思考用不同的策略来解决问题。

  2.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  教学过程

  情境引入

  同学们都有买文具的经历,请看大屏幕(实物投影出示与学生生活紧密联系的实例)几个同学凑钱批发文具,我们来看看他们是怎样买的?

  ①李芸和张倩各拿出8元钱,一共买了10支水彩笔。他俩该怎么分这些笔?

  学生回答后,教师及时做出评价,板书教学。

  ②这儿还有两个同学,也批发了一些文具,陈红拿出6元,赵青拿出4元,一共买了15本同样的笔记本。(指导学生读题)

  这两个同学怎样分这些笔记本?

  学生说出自己的想法,教师组织评议。

  小结得出:按拿钱的多少来分配笔记本最合理,这种分配方法通常叫做按比例分配。(板书课题:按比例分配(一)

  学生口答,独立思考,再交流:

  生:平均分,一人5支。

  生:陈红多点,赵青少点。

  在分笔记本的'过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  探究新知

  1.理解按比例分配的意义。

  把10支水彩笔平均分给两个同学,为什么要平均分呢?让学生理解,因为两人拿出的钱数同样多,也即拿出的钱数比是1:1,所以要平均分。

  陈红和赵青分笔记本,为什么不平均分呢?

  组织学生思考交流,因为两人拿出的钱数不一样多,再平均分是不公平的。要做到公平,应根据出钱多少来分配才合理。两人拿出的钱数的比是3:2,那么,15本笔记本应按3:2分配。

  最后,教师指出:像这样把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

  2.例举身边的事例,进一步理解按比例分配的意义。

  生活中还有很多这样的例子,需要把某一物品按照一定的比来进行分配,比如:实物投影出示物品配料标签。

  (1)某配方奶粉调配时,奶粉和水的比为1∶7,按照这个调配建议,我们在冲奶粉时能平均放奶粉和水吗?

  (2)市场上出售一种5升装的混合油,其中橄榄油与花生油的比是1∶1,这是一种什么样的分装方法?这5升油中,花生油有多少升?

  (组织学生分组讨论反馈.

  交流后,教师及时做出评价)

  你们在生活中有没有遇见这样的例子?介绍给大家听听。(学生举例)

  3.学习例1。

  同学们理解了什么是按比例分配,下面(第54页例1)大家开动脑筋,帮助陈红和赵青分一下笔记本,看看谁分配得最合理,分配的方法最容易操作!

  (1)学生独立思考、计算,教师巡视指导

  (2)反馈学生做法,集体分析解法。

  方法1:陈红、赵青拿出钱数的比是:6∶4=3∶2

  解:设每份是x本。

  3x+2x=15

  5x=15

  x=3

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法2:先求出每份是多少本,再分别求出两人应分的本数。

  15÷(3+2)=3(本)

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法3:总份数是3+2=5,因为陈红应分的本数占15本的,赵青应分得本数占15本的,所以:陈红应分的本数:15×=9(本)。赵青应分的本数:15×=6(本)。

  答:陈红应分9本,赵青应分6本。

  学生交流解法,并说明解题思路。通过评价,鼓励学生用不同的策略来解决问题。

  (3)同学们想出了这么多不同的方法来解决问题,真棒!可是你们如何证明自己的解法是正确的?(引导学生用不同的方法进行检验)

  方法1:把求得陈红、赵青所分到的笔记本数加起来,看是否等于总数15本。

  方法2:把陈红、赵青所分到的笔记本数写成比的形式,看化简后是不是等于3∶2。

  (4)引导反思:这道题有什么特点?我们是怎样解决的?

  特点:把15本笔记本作为总量,按照给定钱数的比进行分配,像这种方法:用份数的思路解答;用分数的思路解答;用方程解答。

  如果按1∶1分配,是怎样分?

  指出:平均分是按比例分配的特例。

  独立思考再交流理解为什么要平均分。

  结合生活实例讨论交流理解按比例分配的实际意义。

  举例交流。

  学生独立完成再汇报交流不同的解题思路。

  用不同的方法进行检验。

  反思交流按比例分配这类型的特点及解题方法。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  巩固练习

  1.练习十五第1题(学生交流解法,并说明解题思路,并鼓励学生用不同的策略来解决问题。)

  2.学生独立完成练习十五第2、3题,完成后用投影仪集体订正。

  3.课件出示课堂活动第一题(阅读资料,结合自己班的人数,设计一个合适的比,将全班学生分成两部分来参加两项公益活动,然后全班交流。)

  学生独立完成,再交流不同的解题策略。

  课堂小结

  同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)在这么多解决问题的方法中,你最喜欢哪一种?为什么?

  谈收获。

六年级上册数学教案15

  教学目标:

  1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。

  2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

  教学重点:

  分析数量关系。

  教学难点:

  找等量关系。

  课前准备:

  课件

  教学过程:

  一、铺垫练习

  (一)解方程:

  χ+40%χ=7 χ-15%χ=10.2 140%χ-χ=0.5

  (二)列出方程解应用题。

  (1)阳光机械厂有职工130人,男工人数是女工人数的 。阳光机械厂男、女职工各多少人?

  (2)阳光机械厂中男工人数比女工人数少26人,男工人数是女工人数的3/5。阳光机械厂男、女职工各多少人?

  二、探究新知

  1、教学例10,出示例10。

  (1)读题,理解题意

  问:60%是哪两个数量比较的结果?比较时,要把哪个数量看作单位“1”?你能想出怎样的数量关系式?

  (2)让学生根据上面的分析画线段图

  (3)学生列方程解答

  (4)交流解答过程及结果

  (5)让学生尝试检验 ;

  (6)小结:这样的'题目告诉我们什么?求的是什么?我们可以怎么思考?

  2、教学“练一练”。

  (1)第1题,先把数量关系填写完整,再列方程解答。

  (2)第2题,学生独立尝试解答,完成后交流讨论:

  1、是怎样想到列方程解的?

  2、列方程时,依据了怎样的等量关系?

  三、课堂总结

  今天学的百分数应用题有什么特点?解决这类题目怎样思考?

  四、课堂作业

  练习十七第1-3题

【六年级上册数学教案】相关文章:

六年级上册数学教案11-16

六年级上册数学教案12-25

六年级上册数学教案(经典)10-19

【精选】六年级上册数学教案10-20

新课标六年级上册数学教案02-18

六年级上册数学教案【热门】01-24

【热门】六年级上册数学教案01-22

六年级上册数学教案【热】01-25

(优秀)六年级上册数学教案10-19

人教版六年级上册数学教案【精选】01-02