现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级上册数学教案

六年级上册数学教案

时间:2024-10-21 17:40:14 六年级数学教案 我要投稿

[集合]六年级上册数学教案15篇

  作为一名教职工,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?下面是小编帮大家整理的六年级上册数学教案,欢迎阅读与收藏。

[集合]六年级上册数学教案15篇

六年级上册数学教案1

  学习内容

  教科书第55页例2,课堂活动第2题,练习十五第4~7题。

  育人目标

  1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

  2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

  3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

  4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  重点:把两个数比的问题的解题方法推广到三个数连比的问题。

  难点:理解三个数连比的问题的解题方法。

  学习评价设计

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  教学过程

  导入新课

  1.填空。(多媒体出示题目)

  (1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

  (2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

  学生回答反馈,说说怎样思考,集体评价。

  2.引入谈话:怎样解决按比例分配的问题?

  在实际生活中还有哪些问题可以用按比例分配的方法解决?生举例。(组织学生分组讨论.

  反馈.

  交流后,老师及时做出评价)

  在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

  独立思考再交流方法和结果,集体评价。

  举例,分组讨论、反馈、交流。

  探究新知

  1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

  要配制220吨混凝土,水泥、沙子、石子的比是:2∶3∶6,需要水泥、沙子、石子各多少吨?

  2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

  生1:前面所做的题都是两个量的比,这道题是三个量的比。

  生2:可以仿照上节所学的按比例分配方法去解。

  3.学生尝试解答,教师巡视。

  4.展示学生解法,说出解题思路。

  方法1:220÷(2+3+6)=20(吨)

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

  答:需要水泥40吨,需要沙子60吨,需要石子120吨。

  方法2:总份数:2+3+6=11

  需要水泥的吨数:220x2/11=40(吨)

  需要沙子的吨数:220x3/11=60(吨)

  需要石子的吨数:220×6/11=120(吨)

  方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

  解:设每份是x吨.

  2x+3x+6x=220

  11x=220

  x=20

  需要水泥的吨数:20×2=40(吨)需要沙子的.吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

  5.议一议:怎样解决按比例分配的问题?

  学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

  学生交流获取的信息。

  讨论交流异同。

  尝试解答,再展示交流解题思路。

  独立思考,再小组交流、小结解决按比例分配问题的一般方法。

  在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  在按比例分配的过程中,感受分配方案的简洁美、理性美。

  巩固练习

  1.课堂活动第2题。

  根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

  2.一堆混凝土中沙子有100kg,石子有60kg,水泥有240kg。要配制180吨这样的混凝土,需要沙子、石子、水泥各多少吨?

  教师组织学生讨论:这道题与前面所做的题有什么区别?

  引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

  学生讨论后尝试独立解题。完成后交流解决问题的方法。

  刚才同学们通过上题计算,知道混凝土中沙子、石子、水泥的比为5∶3∶12。现有一堆总重为40吨的混凝土,经现场测量,水泥有20吨,沙子有12吨,石子有8吨。这堆混凝土符合配比吗?

  再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  学生讨论找到方法。

  独立解题,再交流解题方法。

  讨论交流得出结论。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  课堂小结

  想一想,今天学习的知识与昨天有什么不同?又有什么相同?

  谈收获。

  课堂作业

  练习十五第4—7题。

  独立完成。

六年级上册数学教案2

  新课标人教版六年级数学上册全册教案

  一、教材分析:

  新课标六年级人教版这一册教材主要包括以下内容:《位置》,《分数乘法》,《分数除法》,《圆》,《百分数》,《统计》,《数学广角》和《数学实践活动》等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。

  二、教学目标

  本册教材的教学目标是,使学生:

  1.理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

  2.理解倒数的意义,掌握求倒数的方法。

  3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

  4.掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

  5.知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

  6.能在方格纸上用数对表示位置,初步体会坐标的思想。

  7.理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

  数的简单实际问题。

  8.认识扇形统计图,能根据需要选择合适的`统计图表示数据。

  9.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10.体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  11.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12.养成认真作业、书写整洁的良好习惯。

  三、教学重点:分数乘法和除法、圆、百分数。

  四、教学难点:分数乘法和除法、鸡兔同笼问题。

  五、课时安排:

  各部分教学内容教学课时大致安排如下,教学时可以根据本班具体情况适当灵活掌握。

  1、位置(2课时)

  2、分数乘法(12课时)

  3、分数除法(13课时)

  4、圆(8课时)

  5、百分数(15课时)

  6、统计(2课时)

  7、数学广角(2课时)

  8、总复习(4课时)

  第一单元位置

  单元目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  单元重点:能用数对表示物体的位置。

  单元难点:能用数对表示物体的位置,正确区分列和行的顺序。

  1、位置

  教学目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  教学重点:能用数对表示物体的位置。

  教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

  一、导入

  1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中

  的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的

  方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。

  按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、小结例1:

  (1)确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。

  如果这两个数据的顺序不同,那么表示的位置也就不同。

  3、练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  4、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看

  在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”

  的位置。(投影讲评)

  三、练习

  1、练习一第4题

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、练习一第6题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向

  上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是

  第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、作业

  练习一第1、2、5、7、8题。

  教学反思:

  第二单元分数乘法

  单元目标:

  1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

  2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

  3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

  4、使学生理解倒数的意义,掌握求倒数的方法。

  单元重点:

  分数乘法的意义和计算法则。

  单元难点:

  1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

  2、分数乘法计算法则的推导。

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分

  数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生

  的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步

  感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

六年级上册数学教案3

  一、看图回答问题。

  1.下图为某路公交车的行车路线。

  从广场出发向(  )行驶(  )站到电影院,再向(  )行驶(  )站到商场,再向(  )偏(  )的方向行驶(  )站到少年宫,再向(  )偏(  )的方向行驶(  )站到动物园。

  2.贝贝从幸福路站出发坐了4站,他可能在(  )站或(  )站下车。

  3.京京坐了3站在少年宫下车,她可能是从(  )站或(  )上车的。

  二、选择。

  1.图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的(??)。

  A.东偏南30°方向500米处???????B.南偏东60°方向500米处????

  C.北偏西30°方向500米处???????D.西偏北30°方向500米处

  2.如图,下面说法正确的是(??)。

  A.小红家在广场东偏北60°方向上,距离300米处

  B.广场在学校南偏东35°方向上,距离200米处

  C.广场在小红家东偏北30°方向上,距离300米处

  D.学校在广场北偏西35°方向上,距离200米处

  第2页

  1.根据统计图完成填空。

  (1)11%,15%

  (2)文学,哲学

  (3)2

  2.下面是人民路服装店销售某品牌运动服的情况统计,根据统计图回答问题。

  (1)8%

  (2)MLLS

  (3)1600×22%=352(套)

  答:销售了352套。

  第4页

  1.选择正确答案的序号填在括号里。

  (1)张晓辉想了解自己班上同学喜欢看新闻类、体育类、文艺类等电视节目的人数各占百分之几,可以制作(C)统计图。

  A.条形B.折线C.扇形

  (2)张晓辉想了解自己班上同学上星期看电视的时间在半小时及以内、半小时以上到1小时、1小时以上到1个半小时、1个半小时以上四种情况的人数各有多少,可以制作(A)统计图。

  A.条形B.折线C.扇形

  (3)张晓辉记录了自己上星期每天看电视的时间,如果想清楚地看出上星期看电视时间长短的变化情况,可以制作(B)统计图。

  A.条形B.折线C.扇形

  2.

  (1)扇形条形折线

  (2) A C 540

  (3)增加

  (4)例:A牌和E牌电视机销售量最多。

  第6页

  1.

  (1)C  (2)B

  2.

  (1)环境保护表扬投诉

  (2)20  12

  第9页

  2.

  (1)2.5  2.5(20xx新版为2.5,20xx版是2)

  (2)B

  3.一个圆柱形茶杯的底面半径是4厘米,这个茶杯的'底面周长是多少厘米?放在桌上占桌面多...

  3.14x2x4=25.12(厘米)

  3.14x4

  =3.14x16

  =50.24(平方厘米)

  答:这个茶杯的底面周长是25.12厘米,放在桌上占桌面50.24平方厘米。

  第10页

  1.

  (1)长方形底面周长高

  (2)圆相等

  2.左图:

  3.14×(7÷2)×2+3.14×7×8

  =76.93+175.84

  =252.77(cm)

  右图:

  3.14×5×2+3.14×5×2×6

  =157+188.4

  =345.4(cm)

  3.14×16×8

  =50.24×8

  =401.92(平方厘米)

  答:罐头包装盒侧面商标纸的面积至少401.92平方厘米。

  3.14×(16÷2)×2+401.92

  =401.92+401.92

  =803.84(平方厘米)

  答:大约需要铁皮803.84平方厘米。

  第11页

  4.  6÷2=3(厘米)

  3.14x3x2+3.14x6x8

  =3.14x9x2+3.14x6x8

  =3.14x66

  =207.24(平方厘米)

  答:这个圆柱的表面积是207.24平方厘米。

  第18页

  1、略

  2、图(1)是以长方形的宽边为轴旋转而成的。

  这个圆柱的底面半径是2cm,高是1cm。

  图(2)是以长方形的长边为轴旋转而成的。这个圆柱的底面半径是1cm,高是2cm。

  第19页

  1、略

  2、长:2×3.14×5=31.4(cm)

  宽:20cm

  21页

  2×3.14×5×20=628(cm2)

  第22页

  1、(1)1.6×0.7=1.12(m2)

  (2)2×3.14×3.2×5=100.48(dm2)

  2、3.14×8×13+3.14×(8÷2)2=376.8(cm2)

  第25页

  1、75×90=6750(cm3)

  2、3.14×(1÷2)2×10=7.85(m3)

  26页

  1、3.14×(8÷2)2×15=753.6(cm3)

  1L=1000cm3

  703.6<1000,带这杯水不够喝。

  2、3.14×(O.4÷2)2×5÷0.02≈31(张)

  3.l4×(6÷2)2×10=282.6(cm3)=282.6(mL)

  第34页

  1、1/3×19×12=76(cm3)

  2、1/3×3.14×(4÷2)2×5×7.8≈163(g)

  37页

  1、第1、2、6幅图是圆柱。

  圆柱的两个底面都是圆,并且大小相同;

  圆柱的侧面是曲面,侧面沿高展开后是一个长方形(或正方形);

  圆柱有无数条高。

  第3、4、5幅图是圆锥。圆锥的底面是一个圆;

  侧面是一个曲面,侧面展开后是一个扇形;

  圆锥只有一条高。

  2、圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+两个底面的面积

  圆柱的体积计算公式是通过把它转化成长方体导出的;圆锥的体积计算公式是经过试验导出的。

  3、(1)3.14×10×20+3.14×(10÷2)2×2=785(cm2)

  (2)3.14×(10÷2)2×20=1570(cm3)=1570(mL)=1.57(L)

  1.5<1.57,这壶水够喝。

  4、(1)3.14×(4÷2)2×2+1/3×3.14×(4÷2)2×4=628/15(dm3)

  0.65×628/15=20xx/75(kg)

  (2)20xx/75×70%=14287/750(kg)

六年级上册数学教案4

  第5单元 圆

  确定起跑线

  【教学内容】

  确定起跑线

  【教学目标】

  知识与技能:

  1、通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。

  2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

  3、在主动参与数学活动的过程中, 让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

  过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

  情感、态度与价值观:让学生体会到数学的有用性。

  【教学重难点】

  重点:通过对跑道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。

  难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。

  【导学过程】

  【情景导入】

  (1)播放20xx年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。

  师:100米赛为什么那么吸引人?让那么多人为这9秒58而欢呼不停?(因为公平,才吸引人。与学生聊一聊比赛中公平的话题。)

  (2)播放20xx年世界田径锦标赛男子400米决赛场面。

  师:看了两个比赛,你们有什么发现,又有什么想法?(组织学生交流)

  (100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?

  400米跑的起跑线位置是怎样安排的?外面跑道的`运动员站在最前,这样公平吗?)

  今天,我们就带着这些问题走进运动场,用我们学过的知识来研究、解决这些问题,了解比赛的时候各跑道的起跑线是如何确定的。

  【新知探究】

  (一)观察思考,找出问题关键。

  (课件出示完整跑道图)

  观察跑道图,每条跑道一圈的长度相等吗?差别在哪里昵?比赛的时候,是怎样解决这个问题的?怎样才能做到公平比赛?

  (二)分析比较,确定解决问题思路。

  1、小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?

  学生充分交流得出结论:

  ①跑道一圈长度=2条直道长度+一个圆的周长

  ②内外跑道的长度不一样是因为圆的周长不一样。

  2、小组讨论:怎样找出相邻两个跑道的差距?

  ①分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就可以知道相邻两条跑道的差距。

  ②因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。

  (三)计算验证,解决问题:

  计算圆的周长要知道什么?

  直径

  第一道的直径为72.6米,第二道是多少?第三道呢?

  (让学生选择自己喜欢的方法进行计算)

  方法一:计算完成下表。

  方法二:

  75.1×3.14-72.6×3.14=7.85(m)

  77.6×3.14-75.1×3.14=7.85(m)

  ……

  (引导学生将3.14159换成π进行计算)

  刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?

  第二种方法更简便。

  如果我们在计算圆的周长时直接用π来表示,看你有什么发现?

  (72.6+1.25×2)π-72.6π

  =72.6π-72.6π+1.25×2×π

  =1.25×2×π

  (75.1+1.25×2)π-75.1π

  =75.1π-75.1π+1.25×2×π

  =1.25×2×π

  ……

  (相邻跑道起跑线相差都是“跑道宽×2×π”)

  师:从这里可以看出:起跑线的确定与什么关系最为密切?

  生:与跑道的宽度关系最为密切。

  师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置。

  三、巩固应用,形成技能:

  1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?

  2、在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?

  【知识梳理】

  本节课你学习了什么知识?

  【随堂练习】

  请你设计一个200米的跑道

六年级上册数学教案5

  复式条形统计图

  教学内容:北师大版小学数学教材六年级上册第59—60页。教学目标:1.知识目标:认识复式条形统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形表示相应的数据。

  2.能力目标:使学生能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测,能根据要求把统计图补画完整。

  3.情感目标:⑴培养大家勤于动手动脑的良好习惯。⑵引导大家热爱生活,关注身边的每个事物。

  教学过程:

  一、谈话引入。

  我们已经学过哪些统计图?这些统计图表示数据的方法和特点各是什么?生自由发言。

  揭示课题:复式统计图。

  二、创设情境,初步感知。

  在体育课上你们做过投球游戏吗?根据你的经验,投球时单手投得远一些,还是双手投得远一些?

  学生自由发言。

  究竟谁的想法更合理呢?让我们先来看看第一活动小组同学投球的结果吧。(出示统计表)

  从表格中能比较出结果吗?

  用条形统计图怎样表示呢?自己动手试试看。

  以小组为单位在方格图中尝试完成统计图。

  评价一下,哪幅图更便于比较两种投球方式的投球距离?

  (各小组修改统计图)

  三、探索研究,猜测交流

  从上面的统计图中你得到了哪些信息?

  (大多数的同学都是单手比双手投得远,而且相差得也比较大;也有4号同学双手比单手投得远一些,但是差得并不太多,看来大多数同学还是单手投球会投得更远;6号同学两种情形投的距离一样远,挺有意思的.。)

  这是他们小组的情况,我们班的情况不知道和他们一样不一样,最好我们也实际投一投,将数据收集起来再进行比较。

  我们下午有体育活动课,我们实际做这个实验,各小组要组织好,注意安全,做好记录。这次我们要进行“双手、左手、右手”的实验,先预测一下:哪种情况投掷的距离远呢???四、尝试应用,解决问题

  教材60页试一试,操作应用。

  提醒学生:要认真细心地确定每条直条的高度,用不同的颜色直条表示城镇居民的农村居民平均每年旅游消费的情况。

  五、实践应用,走向生活。

  教材60页,实践活动。

  六、总结全课,储存新知

  通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?

六年级上册数学教案6

  【教学内容】教材第38页例5。

  【教学目标】

  1、使学生在理解数量关系的基础上学会列方程,解答稍复杂的分数应用题。

  2、使学生能用列方程的方法解决一些简单的实际问题。

  3、培养学生的分析、判断和推理能力。

  【教学重难点】

  重点:找数量关系。

  难点:分析数量关系。

  【导学过程】

  一、复习准备

  1、根据题意,看图写出代数式。

  (1)苹果有akg,西瓜的质量比苹果轻。

  西瓜比苹果轻()kg,西瓜重()kg。

  (2)鸡有b只,鸭的只数比鸡少。

  鸭比鸡少()只,鸭有()只。

  指名汇报,并让其他的学生指出应把什么看作单位“1”。

  2、根据题意先写出数量关系式,再列出方程。

  (1)六(1)班有15人参加了合唱队,占全班人数的。六(1)班有多少人?

  (2)小明的体重是35kg,是爸爸体重的,爸爸体重多少千克?

  二、自主探究

  1、创设情境,引出例5。(将上题中第(2)题第二个条件变为“他的体重比爸爸的体重轻”,其他不变,即为例5)

  2、审题。

  (1)看例题的插图,获取信息。独立填写“阅读与理解”,复述题意,说说知道了什么,要求什么。

  (2)分析题意,说说你对“小明的体重比爸爸的体重轻”的理解。

  (3)理解数量关系,让学生自己试着画图表示父子两人体重的数量关系。

  3、分析、解答。

  (1)出示线段图。

  (2)说说数量关系。

  (3)学生根据得到的数量关系列方程解答。

  (4)交流各自的解法。

  (5)阅读课本例5的“分析与解答”过程。

  4、改变例5。

  “回顾与反思”:看看小明的体重是否比爸爸轻,怎样检验?

  课件出示,爸爸体重75千克,小明的体重比爸爸轻,小明的`体重是多少千克?

  (1)根据题意改变线段图。

  (2)根据图意解答。

  (3)启发学生与例5进行比较,说说你发现了什么?

  (4)教师小结:上面用方程解答例5的思路与分数乘法问题的思路是统一的,我们应该好好理解、运用它。

  三、实践应用

  1、看图口头编实际问题。

  组织学生观察分析线段图,然后独立做,最后指名尝试编,集体订正。

  2、完成教材练习八第10题(先尝试解答,后反馈并比较(1)、(2)和(3)、(4)的对比分析:为什么它的解法不同?有什么共同点?)

  四、课堂小结

  今天我们学习了用方程解答稍复杂的分数应用题,在解题时应注意哪些问题?解题关键是什么?

  五、课堂作业

  教材练习八第7、8、9题。

六年级上册数学教案7

  教学目标

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学难点

  引导学生总结分数乘整数的计算法则.

  教学过程

  一、设疑激趣

  1.口算:

  问:怎样计算?(分母不变分子相加。)

  2.根据题意列出算式:

  (1)5个12是多少?

  (2)3个14是多少?

  列式:

  (1)12+12+12+12+12或12×5

  (2)14+14+14或14×3

  题中的两个式子哪个简便?

  (12×5,14×3)它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)这是整数乘法的意义,它对于分数乘法适用吗?

  二、自主探索

  1.分数乘以整数的意义。

  多少块?(投影)

  2份。)听回答,老师边重复边投影(三层复式投影片)。

  把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。

  (3)根据图意列出算式。

  问:这个加法算式有什么特点?(三个加数相同。)

  问:为什么?(三个加数相同。)问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)师:这就是今天我们要学习的分数乘以整数。(板书课题)师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出

  (分数乘以整数的意义与整数乘法的.意义相同,就是求几个相同加数

  练一练(投影片二)

  ①看图写算式。

  ②根据意义列式。

  ③看算式说意义。

  2.分数乘以整数的法则。

  通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?

  师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)③应用法则计算。

  有不一样的吗?强调结果化成带分数。还有不同的做法吗?

  讨论,这两种方法哪种简单?为什么?

  强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。(三)巩固练习1.看图写算式。

  第3页的第1题,看图写算式。(填书上)行间巡视,注意:被乘数和乘数的位置。2.先说算式意义,再填空。

  3.看算式,约分计算。

  4.口算:

  5.判断:(打手势)

  (四)课堂总结

  今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)课堂教学设计说明

  1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。

  2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

  3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。

  总结

  1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

  2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

六年级上册数学教案8

  一、分数乘法

  (一)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

  (整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (二)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (三)、分数混合运算的运算顺序和整数的运算顺序相同。

  (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a × b = b × a

  乘法结合律: ( a × b )×c = a × ( b × c )

  乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

  二、分数乘法的解决问题

  (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

  1、找单位“1”:

  在分率句中分率的前面; 或 “占”、“是”、“比”的后面

  2、求一个数的几倍:

  一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

  3、写数量关系式技巧:

  (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

  (2)分率前是“的”: 单位“1”的量×分率=分率对应量

  (3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

  三、倒数

  1、倒数的意义:

  乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1;

  0没有倒数。 因为1×1=1;0乘任何数都得0, (分母不能为0)

  4、对于任意数

  ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;

  5、真分数的倒数大于1;

  假分数的倒数小于或等于1;带分数的倒数小于1。六年级上册数学人教版知识2

  分数除法

  一、分数除法

  1、分数除法的意义:

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:

  除以一个不为0的数,等于乘这个数的倒数。

  3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

  (2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

  4、“

  ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

  二、分数除法解决问题

  (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

  1、数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是“的”: 单位“1”的量×分率=分率对应量

  (2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

  2、解法:(建议:最好用方程解答)

  (1)方程: 根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

  3、求一个数是另一个数的几分之几:就

  一个数÷另一个数

  4、求一个数比另一个数多(少)几分之几:

  ① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数

  或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数

  六年级上册数学人教版知识3

  比和比的应用

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  比的前项除以后项所得的商,叫做比值。

  例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)

  ∶ ∶ ∶ ∶

  前项 比号 后项 比值

  3、比可以表示两个相同量的关系,即倍数关系。

  也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比 前 项 比号“:” 后 项 比值

  除 法 被除数 除号“÷” 除 数 商

  分 数 分 子 分数线“—” 分 母 分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  ①用比的`前项和后项同时除以它们的最大公因数。

  (1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

  ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

  (2)用求比值的方法。注意: 最后结果要写成比的形式。

  如: 15∶10 = 15÷10 = = 3∶2

  5.按比例分配:把一个数量按照一定的比来进行分配。

  这种方法通常叫做按比例分配。

  如: 已知两个量之比为 ,则设这两个量分别为 。

  6、路程一定,速度比和时间比成反比。

  (如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

  六年级上册数学人教版知识4

  圆的面积

  1、圆的面积:圆所占平面的大小叫做圆的面积。

  用字母S表示。

  2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

  顶点在圆心的角叫做圆心角。

  3、圆面积公式的推导:

  (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

  (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

  (3)、拼出的图形与圆的周长和半径的关系。

  圆的半径 = 长方形的宽

  圆的周长的一半 = 长方形的长

  因为: 长方形面积 = 长 × 宽

  所以: 圆的面积 = 圆周长的一半 × 圆的半径

  S圆 = πr × r

  圆的面积公式: S圆 = πr2

  4、环形的面积:

  一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

  S环 = πR?-πr?  或

  环形的面积公式: S环 = π(R?-r?)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

  而面积扩大或缩小的倍数是这倍数的平方倍。 例如:

  在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

  6、两个圆:

  半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:

  两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

  反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  9、确定起跑线:

  (1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

  (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

  (3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度

  (4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  11、常用各π值结果:

  π = 3.14

  2π = 6.28

  3π = 9.42

  5π = 15.7

  6π = 18.84

  7π = 21.98

  9π = 28.26

  10π = 31.4

  16π = 50.24

  36π = 113.04

  64π = 200.96

  96π = 301.44

  4π = 12.56 8π = 25.12 25π = 78.5

  六年级上册数学人教版知识5

  一、认识圆

  1、圆的定义:圆是由曲线围成的一种平面图形。

  2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

  一般用字母O表示。它到圆上任意一点的距离都相等.

  3、半径:连接圆心到圆上任意一点的线段叫做半径。

  一般用字母r表示。

  把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、直径:通过圆心并且两端都在圆上的线段叫做直径。

  一般用字母d表示。

  直径是一个圆内最长的线段。

  5、圆心确定圆的位置,半径确定圆的大小。

  6、在同圆或等圆内,有无数条半径,有无数条直径。

  所有的半径都相等,所有的直径都相等。

  7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的

  。

  用字母表示为:d=2r或r =

  8、轴对称图形:

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

  折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

  9、长方形、正方形和圆都是对称图形,都有对称轴。

  这些图形都是轴对称图形。

  10、只有1一条对称轴的图形有:

  角、等腰三角形、等腰梯形、扇形、半圆。

  只有2条对称轴的图形是: 长方形

  只有3条对称轴的图形是: 等边三角形

  只有4条对称轴的图形是: 正方形;

  有无数条对称轴的图形是: 圆、圆环。

  二、圆的周长

  1、圆的周长:围成圆的曲线的长度叫做圆的周长。

  用字母C表示。

  2、圆周率实验:

  在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

  发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

  3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

  用字母π(pai) 表示。

  (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

  圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

  (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

  (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  4、圆的周长公式:

  C= πd d = C ÷π

  或C=2π r r = C ÷ 2π

  5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

  在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  6、区分周长的一半和半圆的周长:

  (1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r

  (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r

  六年级上册数学教案人教版2

  六年级上册数学书习题为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

  数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从各种各样的习题中就可以很好的体现出来。以上就是小编为大家梳理归纳的知识,希望能够够帮助到大家。

  六年级上册数学书习题及答案

  1.按照图上所示的位置填空。

  (1)游泳馆在小文家的北偏____方向,距离是___米;

  (2)电影院在小文家的东偏___°方向,距离是_____米。

  (3)图书馆在小文家的____偏_____方向,距离是_____米;

  (4)百货超市在小文家的_____偏______°方向,距离是_____米。

  2、找到每个建筑物的位置。

  (1)体育馆在学校的北偏_____°方向,距离是_____米;

  (2)新华书店在学校的___偏10°方向,距离是_____米;

  (3)李小旭家在学校的_____偏____°方向,距离是____米;

  (4)百货大楼在学校的____偏_____°方向,距离是_____米。

  3.量一量,填一填。

  (1)疯狂老鼠在喷泉___偏____°的方向上,距离是___米;

  (2)空中飞车在喷泉___偏___°的方向上,距离是___米;

  (3)时间隧道在喷泉____偏___°的方向上,距离是____米;

  (4)碰碰车在喷泉____偏____°的方向上,距离是___米。

  4.按要求画出各景点位置。

  (1)鳄鱼潭在大象馆西偏南40°方向,距离300米;

  (2)熊猫馆在大象馆北偏西15°方向,距离200米;

  (3)花果山在大象馆东偏北60°方向,距离500米。

六年级上册数学教案9

  教学目标:

  1、利用已有知识迁移、类推、发现百分数和分数互化的规律和方法。

  2、理解、掌握百分数和分数互化的方法,并能熟练运用,进一步体会数学之间的内在联系,增强思维的深刻性。

  3、通过合作交流、探索发现等数学学习活动教给学生学习方法培养学生分析、比较的思维能力。

  教学重点:

  探索百分数与分数的互化方法。

  教学难点:

  正确进行分数、百分数与小数的互化。

  课前准备:

  小黑板

  教学过程:

  一、复习铺垫

  小黑板出示

  1、把下面的数改写成百分数。

  0.12 1.8 5 0.07 0.109

  2、把下面的百分数改写成小数。

  106% 0.8% 34% 200%

  3.、把下面的分数改写成小数。

  二、探究新知

  1、教学例3。

  (1)出示例3。

  (2)引导讨论。

  师问:你会用百分数表示上面的分数吗?

  (3)师根据学生发言评点两种方法。

  方法一:将分数先改写成小数,再改写成百分数。

  方法二:将分数先改写成分母是100的分数,再改写成百分数。

  2、教学方法一。

  师问:分数可以怎样改写成小数?

  指出:在除不尽的情况下,一般保留三位小数,也就是百分号前保留一位小数。

  3、教学方法二。

  (1)师:有时候,也可以将分数先改写成分母是100的分数,再改写成百分数。

  例如:3/5=60/100=60%

  (2)像这样很容易改写成分母是100的分数还有哪些?

  (3)这种方法有没有局限性呢?引导学生思考。

  (4)引导归纳:将分数先改写成分母是100的分数,再改写成百分数这种方法有它的'好处和局限性,同学们要合理善用。

  4、完成“练一练”。

  先让学生说一说思考过程再归纳。

  师:根据以上学习,说一说分数和百分数的互化方法。哪些地方要特别注意?

  三、巩固练习

  1、完成“练一练”。

  师:分数化成百分数时要注意什么?

  小结:

  (1)能化成分母是100的分数,先将分数化成父母是100的分数,再改写成百分数;

  (2)不能的,用除法先将分数改写成小数,再化成百分数;

  (3)除不尽时,要保留三位小数;

  (4)百分数化成小数,要注意运用约分和通分。

  2、完成练习十四第16题。

  独立完成、评价。说一说“求一个数是另一个数的几分之几”的思考过程。

  3.完成练习十四第17题。

  先分别说一说:4/7和9/11改写成百分数的过程,125%和0.6%改写成分数的过程。

  4、完成练习十四第18题。

  提醒学生:能化简的要先化简。

  5、完成练习十四第19、20题。

  指名分别说一说每组中分数、小数和百分数的意义。

  四、课堂总结

  师:通过今天的学习,你又掌握了什么知识?

六年级上册数学教案10

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的.计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学教案11

  第三单元 分数除法

  第8课时 比的基本性质

  教学内容:

  课本第55页例9、例10和“练一练”,练习九第5-8题。

  教学目标:

  1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

  2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使

  学生认识事物之间都是存在内在联系的。

  教学重点:

  理解比的基本性质。

  教学难点:

  正确应用比的基本性质化简比。

  课前准备:

  多媒体课件

  教学过程:

  一、复习导入

  1、填空。

  师:除法、分数和比之间有什么联系?

  2、做复习题。

  师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

  3.导入课题。

  我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

  二、学习新课

  1、教学例9比的基本性质。

  (1)学生填表

  (2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

  (3)师生共同总结比的基本性质:

  比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

  (4)师:你觉得哪些词语比较重要?

  0除外你怎样理解?

  2、教学例10应用比的基本性质化简比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  出示:把下面各比化成最简单的整数比。

  (1)12:18 (2) 5/6:3/4 (3)1.8:0.09

  (1)让学生试做第(1)题。

  师:你是怎么做的.?6和12、18有着怎样的关系?

  引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

  (2)化简第(2)题。

  师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

  (3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

  (4)化简第(3)题。

  师:想一想如何化简小数比呢?

  让学生独立在书上化简,指名板演

  师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

  三、巩固练习

  1、把“练一练”第1题填完整。

  2、“练一练”第2题。

  指名板演,其余练习,完成后集体核对。

  3、做练习九第7、8题。

  4、出示选择

  (1)1千米∶20米=( )

  A 1∶20 B 1000∶20 C 5∶1

  (2)做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

  A 20∶21 B 21∶20 C 7∶10

  四、课堂总结

  师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  五、布置作业

  练习九第5、6题。

六年级上册数学教案12

  【教学内容】

  教材42——43页例7及练习九的5—9题

  【教学目标】

  知识与技能:使学生理解“工程问题”的特点、数量关系;掌握解题方法,并能正确解答。

  过程与方法:培养学生观察、类推能力,初步的探究知识、合作解决问题的能力。

  情感、态度与价值观:结合生活实际,让学生感受到数学的使用价值

  【教学重难点】

  重点:工程问题数量关系特征及解题方法。

  难点:工作总量用单位“1”表示及工作效率所表示的含义。

  一、复习

  师:同学们,我们回忆一下,以前学过的做工问题涉及到哪三种量三种量?

  生:工作总量、工作效率、工作时间。 师:那它们的关系又如何呢?

  二、导入新课,揭示课题。 师:如果不给出具体的工作总量,该怎么解决呢?这就是我们今天要学习的工程问题。(师板书:工程问题)

  【导学过程】

  1、 出示例7。

  2、一项工程,由甲工程队单独需12天完成,由乙工程队单独做需18天完成,两队合做需多少天完成?师:那怎样理解什么是独做?什么是合做?我们先来演示一下,我们就以同学的课桌的长度为一项工程,以笔的运作为工作效率,同桌分别扮演甲乙工程队,独做就是一个同学从左运作到右,另一个同学从右运作到左。合做就是两个同学相向运作,直到相遇表示这项工程完成了。同学们看看,完成一项工程是独做的快还是合做的快?

  3、师:同学们再动动脑筋,看哪个小组又对又快地讨论出下面的问题?(播放轻松的音乐,学生在音乐声中讨论。教师巡视,对个别组辅导)

  学生以四人小组为单位进行讨论。(课件出示)

  1)题目里没有具体的工作总量,可用什么来表示工作总量?

  2)甲队每天完成工程的几分之分?

  3)乙队每天完成工程的几分之几?

  4)两队合做,每天完成工程的`几分之几? 5)两队合做,需几天完成?

  4、准备题:

  修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?

  师:谁能说说工程问题的特点是什么?

  生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。

  【随堂练习】

  完成下面两题,要求先写出数量关系然后再解答。

  1、一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的?

  2、一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)

  3、一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?

  4、一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?

  5、 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?

  练习九的6—9题。(请先画线段图分析题意,然后再解答。)

六年级上册数学教案13

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5 等于连环画的本数。

  (2)梨重量的7/8 是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的`等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35 答:这个儿童体重35千克。

  (5)让学生自己检验,分两步检验

  ①把χ=35代入原方程,左边=35×4/5=28,右边=28,左边=右边,所以χ=35是原方程的解。

  ②35千克的等于28千克,正好是水分的重量,所以35千克符合题意。

  (6)说说解题思路。

  [新的教学理念就要以学生为主体,让学生主动参与学习,通过找条件、问题、对比线段图理解题意,能激起学生欲望和学习兴趣。]

  2、迁移类推,尝试学习,教学例2:小明的爸爸体重是多少千克?

  (1)读题,明确条件和问题。

  (2)引导题意和线段图对比。

  ①题中有两个量相比较,需要画两条线段来表示两个量的数量关系。

  ②题里的已知条件“

  小明的体重

  ”明确把小明的爸爸体重看作单位“1”。

  ③根据题里的数量关系怎样表示出数量间的相等关系?

  爸爸体重×7/15=小明的体重

  ④学生解答,教师巡视点拨。

  [尝试学习,学生的主体地位得到尊重,在学习过程中,进行独立思考,在相互交流中积累知识。]

  三、巩固练习:(要求画线段图)

  1、课本第35页的“做一做”,教师点评。

  2、修路队修一条公路,已修了35千米,占全长的5/8,这条公路有多少千米?

  3、兴丰小学六年级有女生25人,正好是三、四年级女生人数的1/4 ,4、四年级女生有多少人?

  [练习题要有针对性,要少而精,既让学生巩固所学知识,又培养学生的思维解题能力。]

  四、总结、拓展延伸

  今天的学习内容都是单位“1”的量没有告诉我们,可以用设χ的方法,把χ当作已知数列出方程,求出方程的解后并检验。同学们能根据题意用算术法解答吗?

  五、布置作业

  板书设计:

  分数除法应用题

  例1 解:设小明的体重是x千克

  4/5x = 28 X = 28÷4/5 X = 35 答:小明体重是35千克。

  设计说明:

  分数除法应用题是分数乘法应用题的逆运算题。教案在设计中由“求一个数的几分之几是多少”的应用题引入,又通过和这类题进行对比,引导学生深刻地理解知识间的内在联系,抓住数量关系相同的特点,顺利地根据分数乘法的意义列出方程。这样做使学生明确思维方向,有助于学生思维的发展。教案重视解题思路和解题步骤的归纳,通过层层深入地提问,简单明确的图示,帮助学生找到解题的关键——找准单位“1”,既加深了学生对数量关系的理解,又培养了学生分析问题解决问题的能力。

六年级上册数学教案14

  教学目标

  1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  3.认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

  教学重点:

  会运用商不变的性质或分数的基本性质化简比。

  教学难点:

  能解决一些简单的实际问题。

  教具准备:

  蜂蜜、水、量筒、水杯和自制课件

  教学时间:

  预习提纲:

  1、课本中哪杯水更甜?为什么?

  2、什么是化简比?

  3、化简比的根据是什么?怎样化简比?

  4、试完成第52页的试一试。

  教学过程:

  一、情境引入

  老师:不少同学已经发现今天讲台上多了两个杯子,这是老师课前分别调制好的两杯蜂蜜水。你现在能判断出哪杯蜂蜜水更甜吗?

  你们需要老师提供什么信息?

  根据学生回答出示数据信息:

  蜂蜜水

  (1)号杯:2小杯18小杯

  (2)号杯:40毫升360毫升

  你获得了什么信息?

  联系最近我们所学的知识,你想到了什么?

  随学生回答板书:(1)号杯2:18

  蜂蜜与水的比(2)号杯40:360

  二、探索新知

  1、体会化简比的必要性。

  再次提出问题:

  哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?

  想想办法,先和同桌交流。

  全班交流:你的想法与依据。随学生回答板书。

  2:18=2÷18=2/18=1/9

  30:270=30÷270=30/270=1/9

  比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的.比其实都是是1:9。(式子后板书:1:9)

  2:18=2÷18=2/18=1/9=1:9

  30:270=30÷270=30/270=1/9=1:9

  说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?

  小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。

  2、理解化简比,揭示课题。

  观察、比较:原来的比与后来得出的比有什么联系与区别?

  根据学生发言,师板书:最简单的整数比

  你能列举几个“最简整数比”吗?

  通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。

  指化简过程,揭示课题:比的化简

  你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)

  刚才化简比时,用到了以前学的什么知识?

  小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。

  3、化简比的方法。

  (1)独立尝试:同桌两人分别选一道。(找两人板书)。

  出示小黑板:

  化简比:24:42120:60

  交流:说说你的思路。(方法、根据)

  (2)小组活动:

  化简比:

  0.7:0.82/5:1/4

  这两组比与前个的最大区别是什么?

  小组讨论:如何把这两组比化简?并试一试。

  (3)全班展示、交流:让我们一起来分享同学的智慧。

  (充分展示学生的不同方法。)

  (4)归纳:怎样化简比?

  (必要时,小组先讨论一下再在全班交流。)

  老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。

  4、看书质疑。

  三、巩固提高

  1、化简比:

  (要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)

  21:240.3:1.54/5:5/71:4/50.12:60.4:1/4

  2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样的吗?)

  四、总结

  回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

  小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要.

  五、作业:课本第52页试一试.

  板书设计

  比的化简

  比化简最简单的整数比

  1)号杯2:18=2÷18=2/18=1/9

  蜂蜜与水的比一样甜2)号杯30:270=30÷270=30/270=1/9

  教学反思

  1:9

六年级上册数学教案15

  教学目标:

  1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

  2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

  3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

  4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

  教学重点

  理解百分率的含义,掌握求百分率的方法。

  教学难点:

  探究百分率的含义。

  教学用具:

  PPT课件

  教学过程:

  一、复习导入(8分)

  1、出示口算题,限时1分钟,并校正题目。

  2、小结学生所提问题,并指名口头列式。

  3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

  4、小结:算法相同,但计算结果的表示方法不同。

  5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

  6、口算比赛:(1分钟)(见课件)

  7、根据口算情况,提出数学问题。

  (做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

  8、尝试解答修改后的问题。

  9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

  10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

  二、设问导读(9分)

  1、说明达标率的含义。

  2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

  3、组织学生以4人小组讨论。

  4、巡回指导书写格式。阅读例题,思考下面的问题

  (1)什么叫做达标率?

  (2)怎样计算达标率?

  (3)思考:公式中为什么要“×100%”呢?

  (4)尝试计算例1的达标率。

  三、质疑探究(5分)

  1、在展示台上展示学生写出的百分率计算公式。

  2、要求学生认真计算,并对学生进行思想教育。

  1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

  2、求例1(2)中的发芽率。

  四、巩固练习(14分)

  1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

  2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

  3、出示问题,指导学生书写格式,并强调

  4、解决问题要注意:看清求什么率?找出对应的`量。

  5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

  6、引学生观察、发现:出勤率+缺勤率=1.

  五、加强巩固

  1、说说下面百分率各表示什么意思。(1颗星)

  (1)学校栽了200棵树苗,成活率是90%。

  (2)六(1)班同学的近视率达14%。

  (3)海水的出盐率是20%。

  2、判断。(2颗星)

  (1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )

  (2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )

  (3)把25克盐放入100克水中,盐水的含盐率为25%。

  (4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

  3、解决问题(3颗星)

  (1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

  (2)六(1)班今天有48人到校,有2人缺席,求出勤率。

  (3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

  (4)王师傅加工的300个零件中有298个合格,合格率是多少?

  课堂总结:

  (1分)突出“关键点”。谈谈本节课的收获。

【六年级上册数学教案】相关文章:

六年级上册数学教案11-16

六年级上册数学教案12-25

六年级上册数学教案(经典)10-19

【精选】六年级上册数学教案10-20

新课标六年级上册数学教案02-18

六年级上册数学教案【热门】01-24

【热门】六年级上册数学教案01-22

六年级上册数学教案【热】01-25

(优秀)六年级上册数学教案10-19

人教版六年级上册数学教案【精选】01-02