现在位置:范文先生网>教案大全>数学教案>七年级数学教案>初一数学《一元一次方程》教案

初一数学《一元一次方程》教案

时间:2024-11-21 08:46:54 秀雯 七年级数学教案 我要投稿

初一数学《一元一次方程》教案(精选14篇)

  在教学工作者实际的教学活动中,常常需要准备教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?以下是小编精心整理的初一数学《一元一次方程》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学《一元一次方程》教案(精选14篇)

  初一数学《一元一次方程》教案 1

  一、教材分析:

  1、教材所处的地位和作用:

  本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

  以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

  2、教育教学目标:

  (1)知识目标:

  (A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

  (B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

  (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

  (3)思想目标:

  通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

  3、重点,难点以及确定的依据:

  根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

  二、学情分析:(说学法)

  1、学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

  2、学生在列方程解应用题时,可能存在三个方面的困难:

  (1)抓不准相等关系;

  (2)找出相等关系后不会列方程;

  (3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

  3、学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

  4、学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

  5、学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

  三、教学策略:(说教法)

  如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

  1、“读(看)——议——讲”结合法

  2、图表分析法

  3、教学过程中坚持启发式教学的原则

  教学的理论依据是:

  1、必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

  2、在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X 字串7 ”“—15%X”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的.相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

  3、针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

  4、通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

  5、在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

  四、教学程序:

  (一)课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

  (二)教学简要过程:

  1、复习提问:

  (1)什么叫做等式?

  (2)等式与方程之间有哪些关系?

  (3)求X的15%的代数式。

  (4)叙述代数式与方程的区别。

  (理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)

  2、导入讲授新课:

  (1)教具:

  一块小黑板,抄212例1题目及相对应的空表格。

  左边右边

  (2)新课引述:

  (3)讲述课文212例1:

  (目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(A)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)

  指导学生设原来重量为X千克。这里分析等式左边:原来重量为X千克,运出重量为15%X千克,把以上填入表格左边。 字串7 分析等式右边:剩余重量为42500千克,填入表格右边。

  (目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)

  把以上左边和右边的代数式分别代入(A)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

  同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

  结合解题过程向学生介绍一元一次应用题解法的一般步骤:

  课本215黑体字

  3、课堂练习:

  课文216练习1,2题

  (目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)

  4、新课巩固:

  学生对本节内容进行要小结:

  列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

  (目的:让学生加深对应用题的解法的认识和该注意事项的重视。)

  5、作业布置:

  课文221习题4-4(1)A组1,2,3题

  (目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)

  五、板书设计:

  4*4一元一次方程的应用:

  例题:小黑板出示例1题目解:设原来有X千克面粉,那么运

  相等关系:原来重量—运出重量=剩余重量出了15%X千克,依题意,得

  等式左边:等式右边:X—15%X=42500

  原来重量为X千克,剩余重量为42500千克。解这个方程:

  运出重量为15%X千克。85/100*X=42500

  解一元一次方程的一般步骤:X=50000(千克)

  小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

  初一数学《一元一次方程》教案 2

  一、教材分析

  1、本节内容的地位和作用

  (1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

  2、教学目标(认知、能力、情感)

  (1)知识目标

  能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

  (2)能力目标

  进一步培养学生分析问题,解决实际问题的能力。

  (3)情感目标

  通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

  3、教学重点:

  引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

  知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

  4、教学难点

  掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

  用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

  5、教法学法

  优选教法

  本节课主要采用“学生主体性学习”的教学模式。通过多媒体创设情境,激发学生兴趣,问题让学生想,设计问题让学生做,方法技巧让学生归纳。教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人.

  指导学法

  学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。

  二、教学环节

  我把本节课设计为5个环节:

  1、情境引入相遇问题,初步感知列表方法

  张叔叔和他的朋友们开着越野车一同去森林探险,他们来到了森林不久不幸被一条毒蛇咬了,这种毒性在8小时就会发作,他们知道离森林大约600千米的地方有一个大医院,本医院的救护车60千米/小时,可他们开的越野车40千米/小时,你们想想,用什么办法就可以救张叔叔呢?

  通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题——相遇问题。

  引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

  本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的知识获取过程,真正体现了学生是数学学习的主人。

  2、感悟故事中的追及问题,拓展提高对列表的.认识

  第二场龟兔赛跑:兔子为了体现自己的速度确实比乌龟快的多,他们约定兔子让乌龟先行40分钟,并且在比赛中兔子和乌龟都每跑1分钟,停1分钟,如果乌龟以每分钟1.2米的速度爬行,兔子以每分钟12米的速度行进,试问兔子追上乌龟需要多长时间?追上的地点距出发点有多远?

  以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题——追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

  教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

  3、回归现实,梳理新知

  浙江奥运健儿孟关良,在雅典奥运会上的夺冠为水上项目获得了第一枚金牌,掀开了水上项目的新章。金牌后面是无数的汗水,在千岛湖,孟关良是这样艰苦训练的:一艘快艇与孟关良的皮艇在同一起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?

  本环节让学生应用所学知识解决现实生活中的问题。

  本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

  4、合作互动,深化提高

  编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

  本环节让学生以小组为单位编写题目。

  前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。

  5、畅谈收获,内化提高

  这节课体验到了什么?

  让学生本节学习收获和感受,全体同学交流。

  对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

  设计亮点

  (1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

  (2)让学生经历实践—–认识——再实践——再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

  初一数学《一元一次方程》教案 3

  教学目的:

  掌握去分母的方法,解含有分母的一元一次方程

  教学重点:

  去分母的方法及其根据

  教学难点及其解决方法:

  1.去分母时,正确解决方程中不含分母的项。

  解决方法:注意分析去分母的根据,并在练习时加以强调。

  2.正确理解分数线的'作用。

  解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

  教法:启发式,讲练结合。

  教学过程:

  复习巩固上几节所学的一元一次方程解法

  解方程:(学生练)5y-1=14①

  解:移项,得5y=14+1

  同并同类项,得5y=15

  系数化为1,得y=3

  (口算检验)

  二、新课教授

  1.引入有分母的一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

  思考:

  (1)此方程如何求解?

  若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

  (2)能否把它还原为原来的方程①?

  若能这样,就能避免在计算过程中出现通分过程。

  (3)如何还原呢?(方程两边都乘以6)

  (4)此过程的根据是什么?(等式基本性质2)

  (5)其目的是什么?(消去分母,故此步骤称“去分母”)

  解题过程:解:去分母,得5y-1=14(板书演示约分过程)

  (以下步骤,略)

  2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

  其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

  3.练习:《掌握代数》P87.2(1)

  初一数学《一元一次方程》教案 4

  一、活动内容:

  课本第110页111页 活动1和活动3

  二、活动目标:

  1、知识与技能:

  运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

  2、过程与方法:

  (1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

  (2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

  3、情感态度与价值观:

  通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

  三、重难点与关键

  1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

  2、难点:以上重点也是难点

  3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。

  四、教具准备:

  投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

  五、教学过程:

  (一)、活动1

  一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

  这个人买了n件商品需要多少元?

  教师活动:

  (1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

  (2)教师对学生在发表解法时存在的.问题加以指正。 学生活动:

  (1)分组后对活动一的问题展开讨论,探究解决问题的方法。

  (2)学生派代表上黑板板演,并发表解法。

  解: 2.2n n100

  2.2100+2(n-100) n100

  问题转换:

  一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

  (1)这个人买这种商品多少件?

  (2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

  教师活动:同上 学生活动:同上

  解:(1) n220

  100+ n220

  (2) =0.48n n=0

  100+ =0.48n n=500

  (二)、活动2:

  本活动课前布置学生做好活动前的准备工作:

  1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

  2、分组:(4人一组)

  开始做下面的实验:

  (1)把直尺的中点放在支点上,使直尺左右平衡。

  (2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

  (3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a 和b,(不妨设较长的一边为a)

  (4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

  (5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

  以上实验过程可以由学生填写在预先设计的记录表上

  实验次数 棋子数 ab值 a与b的关系

  右 左 a b

  第1次 1 1

  第2次 1 2

  第3次 1 3

  第4次 1 4

  第n次 1 n

  根据记录下的a、b值,探索a 与b的关系,由于目测可能有点误差。

  根据实验得出a、b之间关系,猜想当第n次实验的a 和b的关系如何?a=nb(学生实验得出学生代表发言)

  如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)

  此问题由学生合作解决并派代表板演并讲解,教师加以指正。

  解:设支点离n枚棋子的距离为 x得:

  x+nx=L x= 答:略

  (三)、小结,由学生谈本节课的收获。

  (四)、作业

  1、课后了解实际生活中的类似活动问题,并举出几个例子。

  2、课本,第110页活动2。

  初一数学《一元一次方程》教案 5

  一、学生起点分析:

  通过前几节解方程的学习,学生已经掌握了解方程的基本方法。在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。

  二、教学任务分析:

  本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程。因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。

  三、教学目标:

  知识与技能:

  1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题。

  2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意。

  过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。

  情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。

  四、教学过程设计:

  环节一创设情景,引入新课

  内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象。

  考虑几个问题:

  1、手里的橡皮泥在手压前和手压后有何变化?

  2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的.高呢?

  3、在这个变化过程中,是否有不变的量?是什么没变?

  目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量。同时分析出不变量与变量间的等量关系。

  学生能够认识到:手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了。即高度和底面半径发生了改变。手压前后体积不变,重量不变。

  环节二:运用情景,解决问题

  内容:例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

  目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题。

  实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析。

  锻压前锻压后

  底面半径5cm 10cm

  高36cm xcm

  体积π×25×36 π×100x

  由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程。

  解:设锻压后的圆柱的高为xcm,由题意得

  π×25×36=π×100x。

  解之得x=9。

  此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

  (1)此类题目中的π值由等式的基本性质就已约去,无须带具体值;

  (2)若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度。

  过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释。

  分析:锻压前锻压后

  底面半径5cm长acm,宽bcm

  高36cm xcm

  体积π×25×36 abx

  环节三:操作实践,发现规律

  内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

  目的:我们知道,感知到的东西往往没有自己亲手经历操作后的感受来得实在。所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现。这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中。

  实际效果:

  长(cm)宽(cm)面积(cm2)

  长方形1 15 5 75

  长方形2 13.6 6.4 86.4

  长方形3 12.8 7.3 93.44

  长方形4 11.6 8.4 97.44

  长方形5 11 9 99

  长方形6 10 10 100

  由学生的实际操作得到的近似值已反映出来一个很好的规律。

  学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为,当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大。当长与宽一样长时面积最大。

  过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了。学生的理解远比直接先讲教材的例题效果要好的多。

  环节四:练一练,体验数学模型

  内容:课本例题

  目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性。

  例2、一根长为10米的铁丝围成一个长方形。若该长方形的长比宽多1.4米。

  (1)此时长方形的长和宽各为多少米?

  (2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

  (3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

  实际效果:学生掌握很好。课本已有完整的解题过程,留做课后作业。

  环节五:课堂小结

  1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键。其中也蕴涵了许多变与不变的辨证的思想。

  2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.

  3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题。

  环节六:布置作业

  初一数学《一元一次方程》教案 6

  教学目标

  1、了解方程的概念和一元一次方程的概念;

  2、知道什么是解方程,会检验某个值是不是方程的解;

  3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

  教学重点

  1、一元一次方程的概念及方程的解;

  2、能验证一个数是否是一个方程的解。

  教学难点

  寻找问题中的等量关系,列出方程。

  教学过程

  一、情景诱导

  同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的'体重吗?

  如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

  要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

  二、自学指导

  学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

  附:自学提纲: 1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

  2、什么是一元一次方程?请举出1—2个例子。

  3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

  4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

  5、什么是解方程?

  三、展示归纳

  1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

  2、发动学生进行评价、补充、完善;

  3、教师根据展示情况进行必要的讲解和强调。

  四、变式练习

  1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

  附:变式练习

  1、下列各式中,哪些是一元一次方程?

  (1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1

  (7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1

  2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

  3、已知关于X的方程2X 《3.1.1一元一次方程》教学设计(修改稿和原稿) +3=0为一元一次方程,求k的值。

  4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是

  5、设某数为x,根据题意列出方程,不必求解:

  (1)某数比它的2倍小3;

  (2)某数与5的差比它的2倍少11;

  (3)把某数增加它的10%后恰为80.

  6、若x=1是方程kx-1=0的解,则k= .

  五、课堂小结

  通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

  六、布置作业

  课本83页习题3.1 第1题。

  初一数学《一元一次方程》教案 7

  【教学背景】:

  本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3.4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。

  【教学目标】:

  (一)知识与技能:

  1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;

  2、熟练掌握追及问题中的等量关系。

  (二)过程与方法

  培养学生观察能力,提高他们分析问题和解决实际问题的能力。

  (三)情感态度价值观:

  培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。

  【教学重难点】:

  1、重点:找等量关系列一元一次方程,解决追及问题。

  2、难点:将实际问题转化为数学模型,并找出等量关系。

  【教学方法】:

  探究式

  【教学过程】:

  一、创设问题情景,引入新课:

  1、行程问题中有哪些基本量?它们间有什么关系?

  2、行程问题有哪些基本类型?

  二、知识应用,拓展创新:

  行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。

  三、例题讲解

  例1(同时不同地)甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。两人同时出发,同向而行,几秒后乙能追上甲?

  分析:在这个直线型追及问题中,两人速度不同,跑的'路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。所以有等量关系:乙走的路程—甲走的路程=100

  解:设x秒后乙能追上甲

  根据题意得5x—3x=100

  解得x=50

  答:50秒后乙能追上甲。

  小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

  中的同时不同地问题,以后遇到此类题,该如何解决。

  例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。如果让黄色马先跑1s,棕色马再开始跑,几秒后可以追上黄色马?

  分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。

  解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。

  小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

  中的同地不同时问题。

  归纳小结:列方程解应用题的一般步骤:

  审—通过审题明确已知量、未知量,找出等量关系;

  设—设出合理的未知数(直接或间接);

  列—依据找到的等量关系,列出方程;

  解—求出方程的解;

  验—检验求出的值是否为方程的解,并检验是否符合实际问题;

  答—注意单位名称。

  练一练:(环形跑道问题)甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。两人同时同地同向跑,几秒后两人第一次相遇?

  分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程—乙走的路程=400

  解答由学生完成。

  本节知识归纳:

  1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;

  2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。

  3 、用示意图辅助分析数量间的关系便于我们列方程。

  四、作业布置:(见补充题)

  【课后反思】:

  通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。

  初一数学《一元一次方程》教案 8

  一、教学目标

  【知识与技能】

  1、理解一元一次方程,以及一元一次方程解的概念。

  2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

  3、掌握检验某个数值是不是方程解的方法。

  【过程与方法】

  在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

  【情感态度和价值观】

  让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

  二、教学重点

  建立一元一次方程的概念,寻找相等关系,列出方程。

  三、教学难点:

  根据具体问题中的相等关系,列出方程。

  四、教学准备:

  多媒体教室,配套课件。

  五、教学过程:

  1。游戏导入,设置悬念

  师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

  生1:24,师:2,3,9,10生2:84师:17,18,24,25

  师:同学们想学会这个魔术吗?生:想!

  师:通过这节课的学习,同学们一定能学会。

  2。突出主题,突出主体

  (1)师:看大屏幕,独立思考下列问题,根据条件列出式子。

  A。 x的2倍与3的差是5

  B。长方形的的长为a,宽比长少5,周长为36,则=36

  C。 A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

  生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+1.5(30t)=180

  师:这些式子小学学习过,它们是( )?生:方程。

  师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

  2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

  (1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

  (2)什么叫一元一次方程?

  (3)什么是的解?你找到验证的方法吗?

  师:在阅读P/80例题1时老师做出友情提示:

  (1)选择一个未知数x

  (2)对于这三个问题,分别考虑:

  用含x的未知数分别表示正方形的边长;

  用含x的未知数表示这台计算机的'检修时间;

  用含x的未知数分别表示男、女生人数。

  (3)找一个问题中的相等关系列出方程,学生讨论出上述答案后

  师:大屏幕显示上述问题的答案

  三、体现新时代教师是学生学习的合作者

  在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

  师:(强调)

  (1)方程两边表示的是同一个数;

  (2)左右两边表示的方法不同。

  【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

  四、给学生一个展示自己精彩的舞台

  师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

  设任意框出的四个数字的第一个为x,则:

  生1:x+(x+1)+(x+7)+(x+8)=24;

  生2:x+(x+1)+(x+7)+(x+8)=84

  师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

  五、基础巩固与知识延伸

  (1)基础练习见同步练习册

  (2)拓展练习如下;

  1、下列四个式子中,是一元一次方程的是( )

  A。1+2+3+4>8B。2x3C。x=1

  D。|10.5x|=0.5yE、

  2、已知关于x的方程ax+b=c的解是x=1,则=

  3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!

  六、小结作业

  初一数学《一元一次方程》教案 9

  一、教学目标

  知识与技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题。

  熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换。

  过程与方法:

  1.经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径。

  2.体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力。

  情感态度与价值观:感受我们身边的数学,体会家人对我们的爱,要热爱家人,热爱生活

  二、教学重点、难点

  重点:能列出一元一次方程解决实际问题难点:利用线段图找到题中的等量关系

  三、教学过程:

  (一)精彩一练

  1.问答题

  (1)、小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时。

  (2)、甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米。这列火车每小时行驶多少千米?

  2.抢答题

  (1)、用一元一次方程解决问题的基本步骤:____________

  (2)、行程问题主要研究、、三个量的关系。

  路程=__________,速度=_____,时间=______。

  (3)若小明每秒跑4米,那么他10秒跑___米。

  (二)创设情趣、明确目标

  以动画的形式演绎一位同学早晨忘带作业,他刚出门不久,父母就发现他忘带作业,于是赶快加速赶往学校给他送作业,最终在去学校的路上追上了他.

  从学生熟悉的'生活经历出发,选择学生身边的、感兴趣的“能否追上小明”这一事件,

  激发学生的好奇心,揭示生活中蕴含着我们数学的一个常见问题追及问题,从而引出课题及例题。

  (三)自主学习

  例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.

  (1)爸爸追上小明用了多长时间?

  (2)追上小明时,距离学校还有多远?

  独立思考,完成学案上的问题:

  1、根据题目已知条件,画出线段图:

  2、找出等量关系:

  小明走过的路程=爸爸走过的路程.3、板书规范写出解题过程:

  解:

  (1)设爸爸追上小明用了x分钟,

  根据题意,得80×5+80x=180x解,得x=4.

  答:爸爸追上小明用了4分钟.

  (2)180×4=720(米)

  1000-720=280(米)

  答:追上小明时,距离学校还有280米.

  (学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导。请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处)

  分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题

  例:甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米.设两车同时开出,同向而行,则快车几小时后追上慢车?

  (学生小组合作完成本题目,按照例题的方法步骤,通过画线段图,分析已知量,找等量关系,列方程解答。教师巡视学生并给予检查和指导。)

  (四)展示生成

  1、通过个别学生分析已知条件,引导大家正确画出线段图:

  2、找出等量关系:快车所用时间=慢车所用时间;

  快车行驶路程=慢车行驶路程+相距路程.

  3.解题过程:

  解:设快车x小时追上慢车,

  据题意得85x=450+65x.

  解,得x=22.5.

  答:快车22.5小时追上慢车.

  (请书写规范的学生到前面板演,并讲解其解题思路,其他同学有不同看法可相互补充。)点播导学

  本节课主要研究行程问题中的追及问题,

  (1)同地不同时,总路程相等;

  (2)同时不同地,时间相等,总路程相等。两类题都是根据总路程相等列方程。可以通过画线段图,理解题中的等量关系,进一步列出方程,解决问题.

  育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4km/h,2班的学生组成后队,速度为6km/h,前队出发1h后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h。

  请根据以上的事实提出问题并尝试回答。

  (分小组讨论,提出不同的可能的问题,并尝试解答,比较哪组几块又准确,想出的方法又多,小组派代表讲给大家听!)

  问1:后队追上前队用了多长时?

  问2:后队追上前队时联络员行了多少路?

  问3:联络员第一次追上前队时用了多长时间?

  问4:当后队追上前队时,他们已经行进了多少路程?

  问5:联络员在前队出发多少时间后第一次追上前队?

  (五)达标测评

  练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵?练习2:甲、乙两人相距280,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?总结提高

  引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系。

  1.会借线段图分析行程问题。

  2.各种行程问题中的规律及等量关系.同向追及问题:

  ①同时不同地甲路程+路程差=乙路程;甲时间=乙时间

  ②同地不同时甲时间+时间差=乙时间;甲路程=乙路程

  (六)预习布置、强调任务

  复习本单元所学内容,总结一些常见的应用题题型作业:P151习题5.9第2题

  初一数学《一元一次方程》教案 10

  教学目标

  ①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。

  ②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。

  ③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。

  教学重点与难点

  重点:一次函数与一元一次方程的关系的理解。

  难点:一次函数与一元一次方程的关系的理解。

  教学设计

  导语

  前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的'一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。

  注:点明学习本节内容的必要性:

  (1)函数与方程、方程组、不等式有着必然的联系;

  (2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。

  引入新课

  我们先来看下面的两个问题有什么关系:

  (1)解方程2x+20=0。

  (2)当自变量为何值时,函数y=2x+20的值为零?

  问题:

  ①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?

  ②从问题本质上看,(1)和(2)有什么关系?

  ③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?

  注:用具体问题作对比,帮助学生理解。

  在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。

  探讨归纳

  从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?

  学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)

  师生共同归纳(教科书39页)(略)

  让学生在探究过程中理解两个问题的同一性。

  练习巩固

  1.以下的一元一次方程问题与一次函数问题是同一个问题

  序号

  一元一次方程问题

  一次函数问题

  1解方程3x—2=0当x为何值时,y=3x—2的值为O?

  2解方程8x+3=0

  3当x为何值时,y=—7x+2的值为O?

  解:(略)

  注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等

  2。根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?

  解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;

  由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。

  注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象

  了解。

  综合应用

  教科书P.139例1(略)

  对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。

  注:例1可看成是一次函数与一元一次方程关系的一个直接应用。

  归纳提高

  框图化小结:

  从数的角度看:

  求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0

  从形的角度看:

  求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标

  从数和形两方面总结,帮助学生建立数形结合的观念。

  布置作业

  教科书P.145习题11.3第1、2题。

  初一数学《一元一次方程》教案 11

  教学目标:

  1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。

  2、通过观察,归纳一元一次方程的概念。

  3、理解等式的基本性质,并利用等式的基本性质解一元一次方程。

  4、培养学生自主学习的意识,增强合作交流的能力。

  教学重点、难点

  教学重点:对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程。

  教学难点:对等式基本性质的理解与运用。

  教学过程:

  一:情境导入

  多媒体展示古代一趣味问题:

  今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何14

  设计理念:设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质.

  二:导入课题

  一元一次方程及其解法

  三:问题情境导入

  问题1:在参加2021年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会的跳水运动员有多少人?如果设参加奥运会的跳水运动员有x人,则根据题意可列出方程:

  2x-4=18 1

  问题2:王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?如果设再过x年,则x年后王玲的年龄是( )岁

  则x年后爸爸的年龄是( )岁

  由题意可得:(先让学生做,然后交流。)

  设计理念:引导学生用数学眼光去发现周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题。

  四:想一想

  看看式子:

  2x-4=18

  36+x=2(12+x)

  1、它们属于我们小学里学过的什么内容?

  方程:含有未知数的等式叫方程。

  2、上面的两个方程的左右两边的式子属于我们学过的代数式中的哪一类式子?

  它们都是整式

  3、如果方程的两边都是整式,我们就把这样的方程叫整式方程。

  设计理念:通过创设愉悦的问题情景,引起学生的学习兴趣,给学生提供经15历从多角度寻求不等关系的过程,在轻松欢快中探索问题,解决问题。

  五:合作探究

  观察方程:2x-4=18

  36+x=2(12+x)

  这两个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)

  一元一次方程:象上面的两个方程,只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。

  设计理念:完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。

  六:相信你会判断

  判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。

  (1)x+3y=4

  ( )

  (2)x2—2x=6

  ( )

  (3)—6x=0

  ( )

  (4)2m+n=0

  ( )

  (5)2x—y=8

  ( )

  七、回顾交流

  1:请同学们自己写出几个一元一次方程的例子。

  2:请同学们回顾一下什么叫方程的解?

  方程的解:使方程左右两边相等的未知数的值叫方程的解。

  3:解方程:求方程解的过程叫做解方程。

  估一估:判断括号里的数是不是方程的解

  1、2x-4=18(x=11)

  2、36+x=2(12+x)(x=12)

  3、3x+1=7(x=3)

  设计理念:通过设置的问题,形成问题串,逐步深入,引导发现,通过提问,把学生逐步引入问题情境中,并且问题具有一定的梯度和层次,对学生的思考有一定的引导启发作用。培养其勇于探索的精神,画出相应的示意图解决问题是解应用题的一个重要手段,要使学生学会利用不同的示意图解决问题。

  八、知识导航

  我们在小学里已经学过等式的基本性质,谁能告诉老师等式基本性质的内容吗?

  等式的'基本性质

  1、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

  2、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

  九、做一做

  说明下列变形是根据等式的哪一条基本性质得到的?

  1、如果5x+3=7,那么5x=4

  2、如果-8x=16,那么x=-2

  3、如果-5a=—5b,那么a=b

  4、如果3x=2x+1,那么x=1

  十、课堂小结

  1、通过这节课的学习,你有哪些收获?你还有哪些疑问?

  十一、作业:

  1、课堂作业p91页习题3、1第2题

  2、课后预习下一节。

  预习要点:

  1、什么叫移项?

  2、会用移项的方法解一元一次方程。

  小结:

  这节课是从学生的实际问题出发,结合新课标准的理念,创造性使用教材而设计的一节课,是继前面有了经历将实际问题转化为数学问题的过程的经验后,体验文字语言、图形语言、符号语言的互相转换。本节的设计是从学生感兴趣的情境入手,通过画线段获取信息,经历从不同的角度寻求不同的不等关系。形成解决问题的一些基本策略,提高学生综合分析问题、解决问题的能力。经历分析寻求不同的等量关系的过程,体验解决问题策略的多样性,发展创新能力。通过本节教学使学生初步感受“数学建模”的方法,能更好地发展学生有条理地进行思考和表达,故本节课有承上启下的作用。

  初一数学《一元一次方程》教案 12

  一、内容与内容分析

  内容

  一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。

  内容解析

  通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。

  数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。

  教学重点

  经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.

  二、目标和目标解析

  1.目标

  (1)运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法.

  (2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断.

  (3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.

  (4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.

  2.目标解析

  (1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;

  (2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;

  (3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;

  (4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

  三、教学问题诊断分析

  在本节课的'教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的数据较大,在计算上也会给学生带来困难。

  教学难点

  明确问题中的已知量与未知量间的关系,寻找等量关系.

  四.教学支持条件分析

  ppt、白板交互、微课、实物投影

  五、教学过程设计

  1.数学活动1 创设情境,导入新课

  播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.

  你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:

  (1)山水市前年居民的人均收入为多少元?

  (2)在山水市,去年售价为1000元的商品在前年的售价为多少元?(精确到0.1元)

  (学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)

  师引导:说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;

  生回答:通过查阅资料或其他方式解释.

  师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?

  生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)

  (2)去年价格上涨率=8%-6.5%=1.5%

  生独立做,后展示结果.

  (1)解:设山水第前年居民人均收入为x元

  列方程(1+8%)x=11664

  解得x=10800

  答:山水市前年居民的人均收入为10800元.

  (2)解:设前年的售价为x元

  (1+1.5%)x=1000

  解得x≈985.2元

  答:在山水市,去年售价为1000元的商品在前年的售价为985.2元.

  师生共同解决问题.

  练习:数据表明:从19xx年至2001年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到2001年底已经升到14652亿元,比上一年增长11.67%,比全国各行业的增加值年均增长高出2.37个百分点。

  你能算出2000年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,2001年全国其它行业的工业产值是18895亿元,你能计算出2000年的总产值吗?

  【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。

  活动二.动手实践、探索新知

  播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.

  用一根质地均匀的木杆和一些等重的小物体,做下列实验:

  (1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;

  (2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;

  (3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

  (4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

  (5) 在木杆左边继续加挂重物,并重复以上操作和记录.

  想想可以怎样替代实验?根据记录你能发现什么规律?

  师引导:没有木杆,重物等实验用具,我们可以设计替代实验。

  生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动

  师介绍:展示两种试验方法,及数据.

  师问:根据记录你能发现什么规律?

  生:思考回答。

  师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程. x

  l

  2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。

  【设计意图】

  活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验.

  说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。

  布置作业。

  请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程.

  六、目标检测设计

  小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长3.8米。你能帮他俩解决这个问题吗?

  【设计意图】

  对本节重点内容进行现场检测,及时了解教学目标的达成情况。

  初一数学《一元一次方程》教案 13

  教材分析

  作为实际问题中的重要部分,配套问题是学生进入实际问题的关键环节。在对一元一次方程的解法进行了充分学习之后,如何将刚学到的知识投入到学习中是至关重要的过程,这决定了学生的学习质量与思维拓展。尽管在方程解法的学习中学生已经思考并尝试将其投入到实际问题的解决中,但往往这样的投入是在为学习方程解法服务。在这一部分,学生将进一步练习如何将实际问题转化为数学模型,利用方程将其合理解决。

  学情分析

  对于学生而言,尽管已经学习了方程的解法,但是在面对一些实际问题时,很多学生依然不习惯使用方程方法,而是依然使用小学的算数方法,虽然在一些简单的问题中,算数方法更有优势,计算更简便,但是在本节课以及之后的一些实际问题中,使用算数方法将无从下手或非常复杂,因此学习如何使用一元一次方程来解决实际问题成为本阶段的重点。

  教学目标

  1、基本会用一元一次方程解决配套问题;

  2、培养学生运用一元一次方程分析和解决实际问题的能力;

  3、体现一元一次方程与实际生活的密切联系,渗透建模和转化的数学思想。

  教学重点

  用一元一次方程解决配套问题

  教学难点

  分析配套问题数量关系,寻找等量关系列出方程

  教学过程

  教学环节

  教学内容

  预设意图

  创设情景

  提出问题

  复习巩固:解此方程:x-2(x-3)=3x+5(x-1)(3min)

  例1:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(12min)

  问题1:思考解决实际问题的步骤应该是什么?

  审题(抓信息)-找关系(等量关系)-列方程(用含未知数的式子)-解决问题

  问题2:在此题目中,每天生产的螺钉数量与每天生产的螺母数量该怎么表示?

  (每天生产的螺钉数量=生产螺钉的工人数量×每人每天可以生产的螺钉数量,同理每天生产的螺母数量=生产螺母的工人数量×每人每天可以生产的螺母数量)

  问题3:根据题目,每天生产的螺钉和螺母如果想刚好配套,它们之间应该满足怎样的数量关系?

  (每1个螺钉需要配2个螺母,则,即2×螺钉数量=1×螺母数量)

  问题4:总结以上关系,思考我们应该设怎样的未知数才更方便于解决这个问题?

  (由问题2和问题3,得:螺钉工人数×每人生产螺钉数×2=螺母工人数×每人生产螺母数,其中每人生产螺钉数与螺母数均已知,则需要找到螺钉工人数与螺母工人数之间的关系,又总人数为22人,则螺母工人数=22-螺钉工人数,设螺钉工人数为x即可)

  问题5:根据以上分析,此方程可以如何列出?

  从解方程开始,复习巩固方程的解法,并引出实际问题的解决方法,在此过程中,将问题逐步拆解,分解为一个个小的问题,再层层递进,得出最后的答案,在此过程中逐步感受配套问题乃至实际问题的基本思路。

  探究归纳

  变式探究:(仅需列出方程)

  1、若每1个螺钉与3个螺母配成一套,则需要怎么安排生产螺钉和螺母的工人?

  2、若每2个螺钉与3个螺母配成一套,则需要怎样安排生产螺钉和螺母的工人?

  3、若每n个螺钉与m个螺母配成一套,则螺钉数量与螺母数量之间是什么关系?(8min)

  思考:解决配套问题中,我们应该怎样寻找数量关系?

  从已有的知识结构出发,不让学生在思维上出现跳跃,逐层递进,通过刚思考过的例子作为依据,进行相同类型题目的变式联系,将探究作为切入点,再对一般的情况进行归纳总结,从具体的数字到一般的情况,逐步推进,体会将未知化为已知的数学探究的乐趣。

  跟踪练习

  例2.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)

  思考:等量关系是什么?如何设未知数并列出方程?(5min)

  解:设用x立方米的'木材做桌面,则用(10-x)立方米的木材做桌腿。

  根据题意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张)。

  答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。

  例3.服装厂要生产一批某种型号的学生服,已知每3米布料可做上衣2件或裤子3条,计划用600米布料生产学生服,应该分别用多少米布料生产上衣或裤子恰好配套?(一件上衣配一条裤子)(5min)

  解:设用x米布料生产上衣,那么用(600-x)米布料生产裤子恰好配套。

  根据题意,得:

  x=600-x,解得:x=360,则600-x=600-360=240(米)。

  答:应该用360米布料生产上衣,用240米布料生产裤子恰好配套。

  在得出一般化的方法后,再利用学到的知识对问题进行解决,这是数学学习的一般办法,也是解决问题的重要手段,在实际问题这一部分的学习中,这样的思考尤为重要。

  课堂小结

  课外作业

  总结:本节课你有哪些收获?(2min)

  1、思路上,对解决实际问题的一般方法有了大致的感受,对于配套问题的等量关系的寻找有了方向,体会了用方程解决实际问题的便利性。

  2、方法上,体会如何利用题目给的信息并分析题目的含义,合理地设未知数来解决实际性的问题。

  当堂检测:(5min)

  完成《课堂小练习》

  作业:

  限时作业一张

  让学通过自己的语言表达学习的收获,在本节课即将结束的时候,让学生自我总结,加深印象,培养学生的自我总结能力,也帮助学生重新回顾重点知识和数学思想。

  板书设计

  一元一次方程与实际问题——配套问题

  例1:

  解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母

  依题意,得

  2000(22-x)=2×1200x

  解方程,得x=10.

  所以22-x=12

  答:应安排10名工人生产螺钉,12名工人生产螺母

  配套问题数量关系:若每n个螺钉与m个螺母配成一套,则m×螺钉数量=n×螺母数量

  初一数学《一元一次方程》教案 14

  一、教学目标

  【知识与技能】

  1、理解一元一次方程,以及一元一次方程解的概念。

  2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

  3、掌握检验某个数值是不是方程解的方法。

  【过程与方法】

  在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

  【情感态度和价值观】

  让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

  二、教学重点

  建立一元一次方程的概念,寻找相等关系,列出方程。

  三、教学难点:

  根据具体问题中的相等关系,列出方程。

  四、教学准备:

  多媒体教室,配套课件。

  五、教学过程:

  1、游戏导入,设置悬念

  师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的`日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

  生1:24,师:2,3,9,10生2:84师:17,18,24,25

  师:同学们想学会这个魔术吗?生:想!

  师:通过这节课的学习,同学们一定能学会。

  2、突出主题,突出主体

  (1)师:看大屏幕,独立思考下列问题,根据条件列出式子。

  A、x的2倍与3的差是5

  B、长方形的的长为a,宽比长少5,周长为36,则=36

  C、A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的倍,经过t小时相遇,则=180

  生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+(30t)=180

  师:这些式子小学学习过,它们是()?

  生:方程。

  师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

  2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

  (1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

  (2)什么叫一元一次方程?

  (3)什么是的解?你找到验证的方法吗?

  师:在阅读P/80例题1时老师做出友情提示:

  (1)选择一个未知数x

  (2)对于这三个问题,分别考虑:

  用含x的未知数分别表示正方形的边长;

  用含x的未知数表示这台计算机的检修时间;

  用含x的未知数分别表示男、女生人数。

  (3)找一个问题中的相等关系列出方程,学生讨论出上述答案后

  师:大屏幕显示上述问题的答案

  三、体现新时代教师是学生学习的合作者

  在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

  师:(强调)

  (1)方程两边表示的是同一个数;

  (2)左右两边表示的方法不同。

  【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

  四、给学生一个展示自己精彩的舞台

  师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

  设任意框出的四个数字的第一个为x,则:

  生1:x+(x+1)+(x+7)+(x+8)=24;

  生2:x+(x+1)+(x+7)+(x+8)=84

  师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

  五、基础巩固与知识延伸

  (1)基础练习见同步练习册

  (2)拓展练习如下;

  1、下列四个式子中,是一元一次方程的是()

  A1+2+3+4>8

  B2x3

  Cx=1

  D||=、2、已知关于x的方程ax+b=c的解是x=1,则=

  3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!

  六、小结作业

【初一数学《一元一次方程》教案】相关文章:

初一数学《一元一次方程》教案10-18

初一数学《一元一次方程》教案必备(7篇)10-22

初一数学《一元一次方程》教案7篇【优秀】10-23

初中数学 一元一次方程教案12-31

一元一次方程数学教案02-23

一元一次方程数学教案06-13

初一数学数轴教案02-01

初一数学复习教案10-20

初一数学下册教案11-02