现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学下册教案

七年级数学下册教案

时间:2024-10-24 07:43:14 七年级数学教案 我要投稿

七年级数学下册教案(集合)

  作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?下面是小编收集整理的七年级数学下册教案,欢迎阅读与收藏。

七年级数学下册教案(集合)

七年级数学下册教案1

  教学目标:

  1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

  2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

  3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

  教学重点:

  1.概率的定义及简单的列举法计算。

  2.应用概率知识解决问题。

  教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

  教学过程:

  一、复习旧知

  1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,

  不可能事件的有 ,必然事件有 ,不确定事件有 。

  2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

  3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

  4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

  5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

  求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

  二、情境导入

  1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

  2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

  (1)会出现哪些可能的结果?

  (2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

  学生分组讨论,教师引导

  三、探究新知

  1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

  学生分组讨论,教师引导:

  (1)一次试验可能出现的结果是有限的;

  (2)每种结果出现的可能性相同。

  设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

  2、探究等可能性事件的概率

  (1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

  (2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

  学生先独立思考,然后同桌间讨论,教师巡视指导

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

  P(A)=/n

  必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

  3、应用新知

  例:任意掷一枚均匀骰子。

  1.掷出的点数大于4的概率是多少?

  2.掷出的点数是偶数的概率是多少?

  解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的`可能性相等。

  1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

  所以P(掷出的点数大于4)=2/6=1/3

  2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.

  所以P(掷出的点数是偶数)=3/6=1/2

  四、实践练习

  1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

  2、先后抛掷2枚均匀的硬币

  (1)一共可能出现多少种不同的结果?

  (2)出现“1枚正面、1面反面”的结果有多少种?

  (3)出现“1枚正面、1面反面”的概率有多少种?

  (4)出现“1枚正面、1面反面”的概率是1/3,对吗?

  3、将一个均匀的骰子先后抛掷2次,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的数之和分别是5的结果有多少种?

  (3)向上的数之和分别是5的概率是多少?

  (4)向上的数之和为6和7的概率是多少?

  五、课堂检测

  1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

  A 2/9 B 1/3 C 4/9 D以上都不对

  2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

  A 0.34 B 0.17 C 0.66 D 0.76

  3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

  A 3/10 B 7/10 C 2/5 D 3/5

  4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

  5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

  P(摸到白球)=

  P(摸到黄球)=

  6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

  六、课堂小结

  回想一下这节课的学习内容,同学们自己的收获是什么?

  1、等可能性事件的特征:

  (1)一次试验中有可能出现的结果是有限的。(有限性)

  (2)每种结果出现的可能性相等。(等可能性)

  2、求等可能性事件概率的步骤:

  (1)审清题意,判断本试验是否为等可能性事件。

  (2)计算所有基本事件的总结果数n。

  (3)计算事件A所包含的结果数。

  (4)计算P(A)=/n。

  布置作业:

  1、P148习题6.4知识技能 1.2.3

  2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

  板书设计

  等可能事件的概率(1)

  等可能事件的特征:

  1、 一次试验可能出现的结果是有限的;

  2、 每一结果出现的可能性相等。

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

七年级数学下册教案2

  教学目标

  以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。

  教学重、难点

  重点:了解平方根的概念,求某些非负数的平方根。

  难点:平方根的意义。

  教学过程

  一、提出问题,创设情境。

  问题1、要剪出一块面积为25cm2的正方形纸片,纸片的`边长应是多少?

  问题2、已知圆的面积是16πcm2,求圆的半径长。

  要想解决这些问题,就来学习本节内容。

  二、想一想:

  1、你能解决上面两个问题吗?这两个问题的实质是什么?

  2、25的平方根只有5吗?为什么?

  3、-4有平方根吗?为什么?

  三、知识引入:

  一个正数a的平方根有两个,它们互为相反数。我们用a表示a的正的平方根,读作

  “根号a”,其中a叫做被开方数。这个根叫做a的算术平方根,另一个负的平方根记为-a.0的平方根是0,0的算术平方根也是0,负数没有平方根。

  求一个数的平方根的运算叫做开平方。

  四、能力、知识、提高

  同学们展示自学结果,老师点拔

  1、情境中的两个问题的实质是已知某数的平方,要求这个数。

  2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根。

  如52=25,(-5)2=25∴25的平方根有两个:5和-5.

  3、任何数的平方都不等于-4,所以-4没有平方根。

  五、知识应用

  1、求下列各数的平方根

  ①49②1.69③(-0.2)2

  2、将下列各数开平方

  ①1②0.09

七年级数学下册教案3

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?

  例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授:

  我们再来看下面一个例子:

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的'客车多少辆?

  问:你能解决这个问题吗?有哪些方法?

  (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)&pide;44=264&pide;44=6(辆)

  列方程解应用题:

  设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。

  44x+64=328 (1)

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  (学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  小敏同学很快说出了答案。“三年”。他是这样算的:

  1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。

  2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。

  3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。

  你能否用方程的方法来解呢?

  通过分析,列出方程:13+x=(45+x) (2)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

七年级数学下册教案4

  一、教材分析

  同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

  二、教学目标

  知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

  过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

  情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

  三、教学重难点

  教学重点:同底数幂乘法运算法则及其应用。

  教学难点:同底数幂乘法运算法则的探索及灵活运用。

  突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

  四、教学过程设计

  本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

  第一环节旧知链接

  活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

  2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

  设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

  第二环节情境引入

  活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

  2、.计算下列各式:

  (1)102×103;

  (2)105×108;

  (3)10m×10n(m,n都是正整数).你发现了什么?

  3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

  (学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

  设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的'乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。

  第三环节新知探究,归纳法则

  活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

  (1)将引例中的各算式改写成乘法的字母算式。

  (2)观察计算结果有什么规律?

  (3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

  (4)验证你的猜想。

  (5)小结归纳法则。

  (小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

  同底数幂相乘,底数不变,指数相加。

  am· an=am+n(m,n是正整数)

  设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

  活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

  am· an· ap = am+n+p

  法则应用注意事项:(1)等号左边是同底数幂相乘法。

  (2)等号两边的同底相同。

  (3)等号右边的指数等于左边的指数和。

  (4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

  设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

  第四环节活学活用

  活动内容一:

  例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

  (3)-x3.x5(4)b2m.b2m+1

  (学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

  设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

  活动内容二:

  例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

  (独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

  设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

  第五环节巩固练习

  活动内容:课本随堂练习

  1.计算:

  (1)52×57;(2)7×73×72;

  (3)-x2·x3;(4)(-c)3·(-c)m.

  2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

  3.解决本节课一开始比邻星到地球的距离问题.

  (小组讨论、交流、展示。自主探究完成。)

  设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

  第六环节课堂小结

  活动内容:这节课你学到了哪些知识及哪些数学思想?

  (鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

  设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

  第七环节布置作业

  习题7.1A组1.B组1、2、3

  设计意图:作业分层布置,因材施教,培养学生的自信心。

  四、教学设计反思:

  1.培养学生数学思想,让学生掌握方法

  在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

  2.改进教学和评价方式,为学生提供自主探索的机会

  数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

七年级数学下册教案5

  教学目标

  1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

  2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;

  3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

  教学重点:

  寻找实际问题中的不等关系,建立数学模型。

  教学难点:

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

  教学过程(师生活动)

  提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你该怎么考虑,如何选择?

  探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。

  2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

  (1)什么情况下,到甲商场购买更优惠?

  (2)什么情况下,到乙商场购买更优惠?

  (3)什么情况下,两个商场收费相同?

  3、我们先来考虑方案:

  设购买x台电脑,如果到甲商场购买更优惠。

  问题1:如何列不等式?

  问题2:如何解这个不等式?

  在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x

  去括号,得

  去括号,得:6000+4500x-45004<4800x

  移项且合并,得:-300x<1500

  不等式两边同除以-300,得<5

  答:购买5台以上电脑时,甲商场更优惠。

  4、让学生自己完成方案(2)与方案(3),并汇报完成情况。

  教师最后作适当点评。

  解决问题甲、乙两个商场以同样的价格出售同样的.商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠?

  问题1:这个问题比较复杂。你该从何入手考虑它呢?

  问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑?

  分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

  最后教师总结分析:

  1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

  2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

  3、如果累计购物超过100元,又有三种情况:

  (1)什么情况下,在甲商场购物花费小?

  (2)什么情况下,在乙商场购物花费小?

  (3)什么情况下,在两家商场购物花费相同?

  上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

  总结归纳:

  通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。

  布置作业:

  教科书第126页习题9.2第1题(1)(2)第3题1、2。

七年级数学下册教案6

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的`温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

七年级数学下册教案7

  情景设置:

  同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。

  (每一个小长方形的长为a,宽为b)

  我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。

  从整体上看,“电视墙”的面积为长方形的长与宽的.积:3a·3b;

  从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。

  于是,我们有:3a·3b = 9ab.

  新课讲解:

  1、探索研究

  一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?

  请学生回答,教师加以总结归纳:

  两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.

  4ab·5b这两个单项式的积是20ab。

  同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们☆☆可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。

  2、例题

  计算:(1)a·(6ab);

  (2)(2x)·(-3xy)。

  解: (1)a·(6ab)

  = (×6)·(a·a)·b

  = 2ab;(教师规范格式)

  (2)(2x)·(-3xy)。

  = 8x·(-3xy)

  = 【8×(-3)】(x·x)y

  = -24xy.

七年级数学下册教案8

  学习目标:

  1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。

  2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。

  3、给出坐标能判断所在象限。

  学习重点:

  1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。

  2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。

  学习难点:

  坐标轴上点的坐标的特点。

  学习方法:

  自主学习合作探究

  学习过程:

  一自主学习:

  1、画一条数轴,在数轴上标出3,—3,0,2

  数轴上的点可以用个实数来表示,这个实数叫做___________。

  2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的`点的位置呢?(例如图7.1—3中A、B、C、D各点)。

  3、自学课本第66—67页的内容,然后填空。

  (1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。

  (2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1—4写出点B、C、D的坐标_______________________。

  思考:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?

  《实数、平面直角坐标系》测试题

  1、如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()。

  A、相等 B、互为相反数 C、互为倒数 D、相等或互为相反数

  2、将某图形的横坐标都减去2,纵坐标不变,则该图形()。

  A、向右平移2个单位 B、向左平移2个单位

  C、向上平移2个单位 D、向下平移2个单位

  《实数、平面直角坐标系》、填空题

  1、生活中只要你留心,就会发现有许多用数字“代替”目标位置的现象。

  (1)一张电影票上写有“7排9号”,进电影院先找,后找,这是一对有序数对;

  (2)一张硬座的火车票“10车厢18号”,上火车时你得先找,再在车厢里找号座位。

  2、教室内座位,列数在前,排数在后。如果李小刚的座位是(3,4),则(3,4)意义是。

  3、某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员你认为(100,20,4)的意义是。

  4、在电影票上将“10排8号”前记为(10,8),那么(25,11)表示的意义是。

  5、小亮家住在3号路,门牌是18号,可记为(3,18),那么小琪家在5号路门牌号是49号,可记为。

七年级数学下册教案9

  一、教学内容分析

  1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的`点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

  师:三个温度计所表示的温度是多少?

  生:2℃,—5℃,0℃。

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零。具体方法如下

  (边说边画):

  1。画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2。规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3。选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示—1的点在什么位置?

  (4)原点向右0。5个单位长度的A点表示什么数?

  原点向左1。5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴。

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3)。画出数轴并表示下列有理数:

  1、1。5,—2。2,—2。5,,,0。

  2。写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念。

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

  十二、课后练习习题1。2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学下册教案10

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的`意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

七年级数学下册教案11

  教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.

  重点:探索两直线平行的条件

  难点:理解“同位角相等,两条直线平行”

  教学过程

  一、情景导入.

  装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

  要解决这个问题,就要弄清楚平行的判定。

  二、直线平行的条件

  以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?

  三角板经过点P的边与靠在直尺上的边所成的角没有变。

  简化图5.2-5,得图.

  图3

  ∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

  简单地说:同位角相等,两条直线平行.

  符号语言:∵∠1=∠2∴AB∥CD.

  如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

  用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的.就是平行线。

  如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=1800,能得出a∥b吗?

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

  简单地说:内错角相等,两直线平行.

  符号语言:∵∠2=∠3∴a∥b.

  (2)∵∠4+∠2=180°,∠4+∠1=180°(已知)

  ∴∠2=∠1(同角的补角相等)

  ∴a∥b.(同位角相等,两条直线平行)

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.

  简单地说:同旁内角互补,两直线平行.

  符号语言:∵∠4+∠2=180°∴a∥b.

  四、课堂练习

  1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?

  2、课本P162题。

  五、课堂小结:怎样判断两条直线平行?

  六、布置作业::P16、1、2题;P174、5、6。

  平行线,三角板,同位角,数学,教学

七年级数学下册教案12

  教学目标:

  1.理解有理数的意义.

  2.能把给出的有理数按要求分类.

  3.了解0在有理数分类中的作用.

  教学重点:

  会把所给的各数填入它所在的数集图里.

  教学难点:

  掌握有理数的两种分类.

  教与学互动设计:

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

  说明我们把所有的这些数统称为有理数.

  试一试你能对以上各种类型的数作出一张分类表吗?

  有理数

  做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

  有理数

  数的集合

  把所有正数组成的集合,叫做正数集合.

  试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

  (三)应用迁移,巩固提高

  【例1】把下列各数填入相应的集合内:

  ,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89

  【例2】以下是两位同学的分类方法,你认为他们分类的`结果正确吗?为什么?

  有理数有理数

  (四)总结反思,拓展升华

  提问:今天你获得了哪些知识?

  由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

  下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

  (五)课堂跟踪反馈

  夯实基础

  1.把下列各数填入相应的大括号内:

  -7,0.125, ,-3 ,3,0,50%,-0.3

  (1)整数集合{};

  (2)分数集合{};

  (3)负分数集合{ };

  (4)非负数集合{ };

  (5)有理数集合{ }.

  2.下列说法中正确的是(  )

  A.整数就是自然数

  B. 0不是自然数

  C.正数和负数统称为有理数

  D. 0是整数,而不是正数

  提升能力

  3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

  2

七年级数学下册教案13

  教学内容:期中复习3-----第八章复习

  教学目标:1. 能说出同底数幂的乘(除)法、幂的乘方、积的乘方运算性质;

  2.了解零指数幂和负整数指数幂的意义,并能用科学记数法表示绝对值小于1的数;

  3.会运用幂的运算性质熟练进行计算;

  教学重点:运用幂的运算性质进行计算.

  一、梳理知识:

  ①同底数幂的乘法 文字叙述: ;字母表示: .

  ②幂的乘方法则 文字叙述: ;字母表示: .

  ③积的乘方 文字叙述: ;字母表示: .

  ④同底数幂的除法 文字叙述: ;字母表示: .

  ⑤零指数幂的规定 字母表示: .

  ⑥负整指数幂的规定 字母表示: .

  ⑦科学记数法 (1≤ a<10,n为整数)

  二、知识应用

  1、你知道下列各式错在哪里吗?在横线填上正确的答案:

  (1) a3+a3=a6;________(2)a3a2=a6; _______(3)(x4)4=x8; _________

  (4) (2a2)3=6a6; ________(5)(3x2y3)2=9x4y5;_______ (6)(-x2)3=x6; _________

  (7) (-a6) (-a2)2=a8;____ (8)(32a)2=92a2; ________(9)-2-2=4;_________

  2、★基础题 计算:(1)x3xx2 (2)(am-1)3 (3)[(x+y)4]5 (4)(-12a5b2)3

  (5)(-2x)6÷(-2x)3 (6)(-3a3)2÷a2 (7)(-12) 2 ÷(-2) 3 ÷(-2) -2 ÷(π-20xx) 0

  3、★提高题 计算:

  (1)(-x)3x(-x)2 (2)(-x)8÷x5+(-2x)(-x)2 (3) y2yn-1+y3yn-2-2y5yn-4

  (4)计算:(-22)3+22×24+(1125)0+-5-(17)-1

  ★4、拓展题 计算:

  (1)(m-n)9 (n-m)8÷(m-n)2 (2)(x+y-z)3n(z-x-y)2n(x-z+y)5n

  5、逆向思维训练:

  (1)计算: A (-2)20xx+ (-2) 20xx B (-0.25)20xx×42009

  (2)已知10m=4,10n=5,求103m+2n的值.

  (3)已知:4m = a , 8n = b 求: ① 22m+3n 的值; ② 24m-6n 的值.

  (4)比较550与2425的大小。

  www.

  三、巩固练习:

  1、在xm-1( )=x2m+1中,括号内应填写的代数式是(  )

  A、x2m B、x2m+1 C、x2m+2 D、xm+2

  2、若a,b互为相反数,且ab≠0,n为正整数,则下列各对数中,互为相反数的是(  )

  A、an和bn  B、a2n和b2n  C、a2n-1和b2n-1  D、a2n-1和-b2n-1

  3、若(am+1bn+2)(a2n-1b2n)=a5b5,则m+n的值为(  )

  A、1  B、2  C、3   D、4

  4、(1)一列数71,72,73,……,72001,其中末位数字是3的有______个。

  (2)22003×32004的个位数字是____

  5、若x=2m+1,y=3+8m,则用x的代数式表示y为 .

  6、生物学家发现一种病毒,用1015个这样的病毒首尾连接起来,可以绕长约为4万km的赤道1周,一个这样的病毒的长度为(   )

  A、4×10-6mm  B、4×10-5mm  C、4×10-7mm  D、4×10-8mm

  7、计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”。如(1101)2表示二进制,将它转换成十进制形式是1×23+1×22+0×21+1×20=13。将二进制数(10110)2转换成十进制形式的数是(  )

  A、8  B、15   C、22   D、30

  8、生物学家指出,生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1-H2-H3-H4-H5-H6这条生物链中(Hn表示第n个营养级,n=1,2,3,4,5,6),要使H6获得10kJ的能量,那么需要H1提供的能量约为_____kJ。

  编号 38 班级 姓名 学号 练习(1)11.4.20

  一.填空:

  1.―y2 y5= ; (-2 a ) 3 ÷a -2= ; 2×2m+1÷2m=

  2. a12=( )2=( )3=( )4 ; 若x2n=2,则x6n= .

  3. 若a=355,b=444,c=533,请用“<”连接a、b、c

  4. 把-2360000用科学计数法表示 ;

  1纳米 = 0.000000001 m ,则2.5纳米用科学记数法表示为 m.

  二.选择:

  1、若am=3,an=2,则am+n 的值等于 ( )

  A.5 B.6 C.8 D.9

  2. -xn与(-x)n的正确关系是 ( )

  A.相等 B.当n为奇数时它们互为相反数,当n为偶数时相等

  C.互为相反数 D.当n为奇数时相等,当n为偶数时互为相反数

  3.如果a=(-99)0,b=(-0.1)-1,c=(-53)-2, 那么a、b、c三数的大小为 ( )

  A. a>b>c B. c>a>b C. a>c>b D. c>b>a

  三.计算:

  (1)(-a3)2 (-a2)3 (2) -t3(-t)4(-t)5 (3) (p-q)4÷(q-p)3 (p-q)2

  (4)(-3a)3-(-a) (-3a)2 (5)4-(-2)-2-32÷(3.14—π)0

  四.解答:

  1.已知ax=3,ay=2,分别求①a2x+3y的.值②a3x-2y的值

  2.已知 3×9m×27m=316,求m的值.

  3.已知 x3=m,x5=n用含有m、n的代数式表示x14.

  练习(2)班级 姓名 学号 态度评价 家长签字

  1、用科学记数法表示:(1)0.00034=;(2)(3)-0.00000730=

  2、(1)已知10m=3,10n=2,则103m+2n-1= .

  (2)已知3x+15x+1=152x-3,则x= ;

  (3)已知22x+3-22x+1=192,则x= .

  3、要使(x-1)0-(x+1)-2有意义,x的取值应满足什么条件?

  4、已知2a=3,2b=6,2c=12,则 a. b. c的关系为①b=a+1②c=a+2③a+c=2b ④b+c=2a+3,其中正确的个数有 ( )

  A.1个 B.2个 C. 3个 D.4个

  5、计算

  (n-m)3(m-n)2 -(m-n)5

  6、(1)若2x+5y—3=0,求4x-132y的值.

  (2)如果a-4=-3b,求3a×27b的值

  7、已知: ,求x的值.

七年级数学下册教案14

  教学目标:

  (一)知识目标:

  1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  2、理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  (二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  (三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  教学重点:

  探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  教学难点:

  理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  教学过程:

  导入新课:

  为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、

  受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、

  想一想:

  (1)对于上面的画面小明得到如下的结果:

  第一幅画的画面面积是x(mx)米2、

  第二幅画的画面面积是(mx)(x)米2、

  他的结果对吗?可以表达得更简单些吗?说说你的理由、

  (2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?

  (3)如何进行单项式与单项式相乘的'运算?

  教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级数学下册教案15

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1。学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2。联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1。马路用什么几何图形代表?(直线)

  2。文中相关地点用什么代表?(直线上的点)

  3。学校大门起什么作用?(基准点、参照物)

  4。你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1。0代表什么?

  2。数的符号的实际意义是什么?

  3。—75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1。什么样的直线叫数轴?它具备什么条件。

  2。如何画数轴?

  3。根据上述实例的经验,“原点”起什么作用?

  4。你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1。判断下列图形是否是数轴。

  2。口答:数轴上各点表示的数。

  3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的'哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1。什么是数轴?

  2。数轴的“三要素”各指什么?

  3。数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

  五、板书

  1。数轴的定义。

  2。数轴的三要素(图)。

  3。数轴的画法。

  4。性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1。什么样的直线叫数轴?

  定义:规定了_________、________、_________的直线叫数轴。

  数轴的三要素:_________、_________、__________。

  2。画数轴的步骤是什么?

  3。“原点”起什么作用?__________

  4。你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1。画一条数轴

  2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

  练习:

  1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

  2。距离原点距离为5个单位的点表示的数是________。

  3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

  附:目标检测

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

  3。画数轴,观察数轴,在原点左边的点有_______个。

  4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

【七年级数学下册教案】相关文章:

七年级下册教案数学教案06-29

七年级数学下册教案01-01

七年级数学下册教案04-23

数学下册教案03-16

【荐】七年级数学下册教案02-15

【精】七年级数学下册教案02-15

七年级数学下册教案【热门】02-04

七年级数学下册教案【荐】03-01

七年级数学下册教案湘教版11-04

七年级数学下册教案优秀07-22