高二数学教案精品15篇
作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。如何把教案做到重点突出呢?以下是小编收集整理的高二数学教案,仅供参考,希望能够帮助到大家。
高二数学教案1
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的.探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
引入新课
提出问题:如何研究三角函数的单调性
小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高二数学教案2
第1课时算法的概念
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题.
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.
2.归纳总结,核心必记
(1)算法的概念
12世纪
的算法指的是用阿拉伯数字进行算术运算的过程
续表
数学中
的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是.
(2)任何问题都可以设计算法解决吗?
提示:不一定.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)算法的概念:;
(2)设计算法的目的:.
[思考1]应从哪些方面来理解算法的概念?
名师指津:对算法概念的三点说明:
(1)算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步骤之内完成.
(2)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.
(3)算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.
[思考2]算法有哪些特征?
名师指津:(1)确定性:算法的每一个步骤都是确切的,能有效执行且得到确定结果,不能模棱两可.
(2)有限性:算法应由有限步组成,至少对某些输入,算法应在有限多步内结束,并给出计算结果.
(3)逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题.
(4)不性:求解某一个问题的算法不一定只有的一个,可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.
V讲一讲
1.以下关于算法的说法正确的是()
A.描述算法可以有不同的方式,可用自然语言也可用其他语言
B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题
C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果
D.算法要求按部就班地做,每一步可以有不同的结果
[尝试解答]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题,故B不正确.
算法过程要一步一步执行,每一步执行操作,必须确切,只能有结果,而且经过有限步后,必须有结果输出后终止,故C、D都不正确.
描述算法可以有不同的语言形式,如自然语言、框图语言等,故A正确.
答案:A
判断算法的关注点
(1)明确算法的含义及算法的特征;
(2)判断一个问题是否是算法,关键看是否有解决一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步内完成.
V练一练
1.(20xx?西南师大附中检测)下列描述不能看作算法的'是()
A.洗衣机的使用说明书
B.解方程x2+2x-1=0
C.做米饭需要刷锅、淘米、添水、加热这些步骤
D.利用公式S=πr2计算半径为3的圆的面积,就是计算π×32
解析:选BA、C、D都描述了解决问题的过程,可以看作算法,而B只描述了一个事例,没有说明怎样解决问题,不是算法.
假设家中生火泡茶有以下几个步骤:
a.生火b.将水倒入锅中c.找茶叶d.洗茶壶、茶碗e.用开水冲茶
[思考1]你能设计出在家中泡茶的步骤吗?
名师指津:a→a→c→d→e
[思考2]设计算法有什么要求?
名师指津:(1)写出的算法必须能解决一类问题;
(2)要使算法尽量简单、步骤尽量少;
(3)要保证算法步骤有效,且计算机能够执行.
V讲一讲
2.写出解方程x2-2x-3=0的一个算法.
[尝试解答]法一:算法如下.
第一步,将方程左边因式分解,得(x-3)(x+1)=0;①
第二步,由①得x-3=0,②或x+1=0;③
第三步,解②得x=3,解③得x=-1.
法二:算法如下.
第一步,移项,得x2-2x=3;①
第二步,①式两边同时加1并配方,得(x-1)2=4;②
第三步,②式两边开方,得x-1=±2;③
第四步,解③得x=3或x=-1.
法三:算法如下.
第一步,计算方程的判别式并判断其符号Δ=(-2)2+4×3=16>0;
第二步,将a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.
设计算法的步骤
(1)认真分析问题,找出解决此题的一般数学方法;
(2)借助有关变量或参数对算法加以表述;
(3)将解决问题的过程划分为若干步骤;
(4)用简练的语言将步骤表示出来.V
练一练
2.设计一个算法,判断7是否为质数.
解:第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
V讲一讲
3.一次青青草原草原长包包大人带着灰太狼、懒羊羊和一捆青草过河.河边只有一条船,由于船太小,只能装下两样东西.在无人看管的情况下,灰太狼要吃懒羊羊,懒羊羊要吃青草,请问包包大人如何才能带着他们平安过河?试设计一种算法.
[思路点拨]先根据条件建立过程模型,再设计算法.
[尝试解答]包包大人采取的过河的算法可以是:
第一步,包包大人带懒羊羊过河;
第二步,包包大人自己返回;
第三步,包包大人带青草过河;
第四步,包包大人带懒羊羊返回;
第五步,包包大人带灰太狼过河;
第六步,包包大人自己返回;
第七步,包包大人带懒羊羊过河.
实际问题算法的设计技巧
(1)弄清题目中所给要求.
(2)建立过程模型.
(3)根据过程模型建立算法步骤,必要时由变量进行判断.
V练一练
3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?
解:法一:算法如下.
第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.
第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.
法二:算法如下.
第一步,把9枚银元平均分成3组,每组3枚.
第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.
第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.
高二数学教案3
一、内容和内容解析
1.内容
本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象。如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题。
2.内容解析
本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法。在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的。统计有两种。一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查。但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计。例如有的产品数量非常的大或者有的产品的质量检查是破坏性的。统计和概率的基础知识已经成为一个未来公民的必备常识。
抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法。它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体。其中蕴涵了重要的统计思想——样本估计总体。而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体。而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑。
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性。
二、目标和目标解析
1.目标
(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;
(3)以问题链的形式深刻理解样本的代表性。
2.目标解析
本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义。同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题。让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识。
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性。抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解。为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本。由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系。
三、教学问题诊断分析
学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想——样本估计总体以及统计结果的不确定性。学生已有知识经验与本节要达成的教学目标之间还有很大的差距。主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑。
在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的.体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等。在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力。在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳。
根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体。
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学。
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯。
问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?
普查:为了一定的目的而对考察对象进行的全面调查称为普查。
总体:所要考察对象的全体称为总体(population)
个体:组成总体的每一个考察对象称为个体(individual)
普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等。
设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的。
(二)操作实践、展开课题
问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?
抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(samplinginvestigation).
样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).
师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案。
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的。
列举:一个的案例
高二数学教案4
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能。
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解。
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。
初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)
(同学议论结果,答案是肯定的。)
教师提问:什么是命题?
(学生进行回忆、思考。)
概念总结:对一件事情作出了判断的语句叫做命题。
(教师肯定了同学的回答,并作板书。)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。
(教师利用投影片,和学生讨论以下问题。)
例1判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)
(1)什么叫做命题?
可以判断真假的语句叫做命题。
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如x2-5x+6=0
中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”。
“或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。
命题可分为简单命题和复合命题。
不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。
(4)命题的表示:用p,q,r,s,……来表示。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)
我们接触的复合命题一般有“p或q”“p且q”、“非p”、“若p则q”等形式。
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。
3.巩固新课
例2判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的.简单命题。
(1)12>5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.
(让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)
例3写出下表中各给定语的否定语(用课件打出来).
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有n个”的否定语是“至少有n+1个”。
(如果时间宽裕,可让学生讨论后得出结论。)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)
4.课堂练习:第26页练习1,2.
5.课外作业:第29页习题1.61,2.
高二数学教案5
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.
(5)进一步理解数形结合的思想方法.
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.
②本节的难点是曲线方程的概念和求曲线方程的方法.
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.
(4)从集合与对应的观点可以看得更清楚:
设表示曲线上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合.
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件?数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的代数方程。
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。
教学设计示例
课题:求曲线的方程(第一课时)
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:求曲线的方程。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的.方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.
求解过程略.
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
【板书设计】
§7.6求曲线的方程
坐标法:
解析几何:
基本问题:
高二数学教案6
课题:2。1曲线与方程
课时:01
课型:新授课
一、教学目标
(一)知识教学点
使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。
(二)能力训练点
通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。
(三)学科渗透点
通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。
二、教材分析
1、重点:求动点的轨迹方程的常用技巧与方法。
(解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)
2、难点:作相关点法求动点的轨迹方法。
(解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)
教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。
三、教学过程
(一)复习引入
大家知道,平面解析几何研究的主要问题是:
(1)根据已知条件,求出表示平面曲线的方程;
(2)通过方程,研究平面曲线的性质。
我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。
(二)几种常见求轨迹方程的方法
1、直接法
由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。
例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;
(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。
对(1)分析:
动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。
解:设动点P(x,y),则有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。
对(2)分析:
题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:
设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,
其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点)。
2、定义法
利用所学过的'圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。
分析:
∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。
又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。
故P点到两定点距离之和是定值,可用椭圆定义
写出P点的轨迹方程。
解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半径OQ上。∴|PO|+|PQ|=2。
由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。
3、相关点法
若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。
例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。
分析:
P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。
解:设点P(x,y),且设点B(x0,y0)
∵BP∶PA=1∶2,且P为线段AB的内分点。
4、待定系数法
求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。
例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲
曲线方程。
分析:
因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方
ax2—4b2x+a2b2=0
∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。
∴△=16b4—4a4b2=0,即a2=2b。
(以下由学生完成)
由弦长公式得:
即a2b2=4b2—a2。
(三)巩固练习
用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。
1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的
2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?
3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。
答案:
义法)
由中点坐标公式得:
(四)、教学反思
求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。
四、布置作业
1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。
2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。
3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。
作业答案:
1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。
高二数学教案7
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的'.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2<│z│<3.
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
高二数学教案8
一、教学目的
1、使学生进一步理解自变量的取值范围和函数值的意义。
2、使学生会用描点法画出简单函数的图象。
二、教学重点、难点
重点:
1、理解与认识函数图象的意义。
2、培养学生的看图、识图能力。
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题。
三、教学过程
复习提问
1、函数有哪三种表示法?(答:解析法、列表法、图象法。)
2、结合函数y=x的图象,说明什么是函数的图象?
3、说出下列各点所在象限或坐标轴:
新课
1、画函数图象的方法是描点法。其步骤:
(1)列表。要注意适当选取自变量与函数的对应值。什么叫“适当”?这就要求能选取表现函数图象特征的几个关键点。比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了。
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来。
(2)描点。我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点。
(3)用光滑曲线连线。根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线。
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线)。
2、讲解画函数图象的`三个步骤和例。画出函数y=x+0。5的图象。
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图。
练习
①选用课本练习
(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象。
作业:选用课本习题。
四、教学注意问题
1、注意渗透数形结合思想。通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识。把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征。
2、注意充分调动学生自己动手画图的积极性。
3、认识到由于计算器和计算机的普及化,代替了手工绘图功能。故在教学中要倾向培养学生看图、识图的能力。
高二数学教案9
教材分析:
三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
教案背景:
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的.关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位。
教学方法:
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
教学目标:
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
教学重点:
诱导公式(三)的推导及应用。
教学难点:
诱导公式的应用。
教学手段:
多媒体。
高二数学教案10
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1、会用坐标表示平面向量的加法、减法与数乘运算。
2、理解用坐标表示的平面向量共线的条件。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算。
4、能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件。
三、教学过程
(一)知识梳理:
1、向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。
(2)设A(x1,y1),B(x2,y2),则
(二)平面向量坐标运算
1、向量加法、减法、数乘向量
设=(x1,y1),=(x2,y2),则
+=—=λ=。
2、向量平行的坐标表示
设=(x1,y1),=(x2,y2),则∥?
(三)核心考点·习题演练
考点1。平面向量的坐标运算
例1。已知A(—2,4),B(3,—1),C(—3,—4)。设(1)求3+—3;
(2)求满足=m+n的实数m,n;
练:(20xx江苏,6)已知向量=(2,1),=(1,—2),若m+n=(9,—8)
(m,n∈R),则m—n的值为
考点2平面向量共线的坐标表示
例2:平面内给定三个向量=(3,2),=(—1,2),=(4,1)
若(+k)∥(2—),求实数k的值;
练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4)。若λ为实数,(+λ)∥,则λ=()
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1、向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2—x2y1=0。至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②。
2、两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值。
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的`动点,则的值为;的值为。
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
练:(20xx,安徽,13)设=(1,2),=(1,1),=+k。若⊥,则实数k的值等于()
【思考】两非零向量⊥的充要条件:·=0? 。
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2。
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0。
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为()
A。6B。7C。8D。9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,—1),P是曲线上一个动点,则的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解。。
五、课后作业(课后习题1、2题)
高二数学教案11
教学 目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学 重点:
(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学 难点:
圆的一般方程特点的研究.
教学 用具:
计算机.
教学 方法:
启发引导法,讨论法.
教学 过程 :
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的`圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
【 板书 设计】
圆的一般方程
圆的一般方程
例1:
例2:
例3:
练习:
小结:
作业:
高二数学教案12
一、教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、
(2)能从数和形两个角度熟悉单调性和奇偶性、
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、
二、教学建议
(一)知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系、
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像、
(二)重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实、
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的.形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、
(三)教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、
高二数学教案13
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。
(3)掌握直线方程各种形式之间的互化。
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力。
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法。
教学建议
1、教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式。
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程。
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线。本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用。
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头。学生对点斜式学习的效果将直接影响后继知识的学习。
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明。
2、教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显。教学中各部分知识之间过渡要自然流畅,不生硬。
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础。
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程。根据两个条件运用待定系数法和方程思想求直线方程。
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数)。
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用。教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上。
教学设计示例
直线方程的一般形式
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。
教学重点、难点:直线方程的一般式。直线与二元一次方程(不同时为0)的对应关系及其证明。
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答,并纠正学生中不规范的表述。再看一个问题:
问:求出过点,的.直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导。
经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于直线的二元一次方程。
至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。
【动画演示】
演示“直线各参数。gsp”文件,体会任何二元一次方程都表示一条直线。
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略
高二数学教案14
教学目标
(1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理;
(2)能运用定理证明不等式及求一些函数的最值;
(3)能够解决一些简单的实际问题;
(4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系;
(5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科学的认识习惯,进一步渗透变量和常量的哲学观;
教学建议
1.教材分析
(1)知识结构
本节根据不等式的性质推导出一个重要的不等式:,根据这个结论,又得到了一个定理:,并指出了为的算术平均数,为的几何平均数后,随后给出了这个定理的几何解释。
(2)重点、难点分析
本节课的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论,教学难点是正确理解和使用平均值定理求某些函数的最值.为突破重难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,注意到平均值定理中等号成立的条件,发现使用定理求最值的三个条件“一正,二定,三相等”缺一不可,才能大大加深学生对正确使用定理的理解,教学中要注意培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.
㈠定理教学的注意事项
在公式以及算术平均数与几何平均数的定理的教学中,要让学生注意以下两点:
(1)和成立的条件是不同的:前者只要求都是实数,而后者要求都是正数。
例如成立,而不成立。
(2)这两个公式都是带有等号的不等式,因此对其中的“当且仅当……时取‘=’号”这句话的含义要搞清楚。教学时,要提醒学生从以下两个方面来理解这句话的含义:
当时取等号,其含义就是:
仅当时取等号,其含义就是:
综合起来,其含义就是:是的充要条件。
(二)关于用定理证明不等式
当用公式,证明不等式时,应该使学生认识到:
它们本身也是根据不等式的意义、性质或用比较法(将在下一小节学习)证出的。因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明。
(三)应用定理求最值的条件
应用定理时注意以下几个条件:
(1)两个变量必须是正变量;
(2)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值;
(3)当且仅当两个数相等时取最值.
即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.
在求某些函数的最值时,还要注意进行恰当的恒等变形、分析变量、配置系数.
(四)应用定理解决实际问题的分析
在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意;
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案。
2.教法建议
(1)导入新课建议采用学生比较熟悉的问题为背景,这样容易被学生接受,产生兴趣,激发学习动机.使得学生学习本节课知识自然且合理.
(2)在新授知识过程中,教师应力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解准确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.
(3)教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
(4)可以设计解法的正误讨论,这样能够使学生尝试失败,并从失败中找到错误原因,加深对正确解法的理解,真正把新知识纳入到原有认知结构中.
(5)注意培养应用意识.教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的`教学,使学生不禁感到“数学有用,要用数学”.
第一课时
教学目标:
1.学会推导并掌握两个正数的算术平均数与几何平均数定理;
2.理解定理的几何意义;
3.能够简单应用定理证明不等式.
教学重点:均值定理证明
教学难点:等号成立条件
教学方法:引导式
教学过程:
一、复习回顾
上一节,我们完成了对不等式性质的学习,首先我们来作一下回顾.
(学生回答)
由上述性质,我们可以推导出下列重要的不等式.
二、讲授新课
1.重要不等式:
如果
证明:
当
所以,
即
由上面的结论,我们又可得到
2.定理:如果是正数,那么
证明:∵
即
显然,当且仅当
说明:)我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.
)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数.
)“当且仅当”的含义是充要条件.
3.均值定理的几何意义是“半径不小于半弦”.
以长为的线段为直径作圆,在直径 AB 上取点 C , . 过点 C 作垂直于直径 AB 的弦DD′,那么
即
这个圆的半径为,显然,它不小于 CD ,即,其中当且仅当点 C 与圆心重合;即时,等号成立.
在定理证明之后,我们来看一下它的具体应用.
4.例题讲解:
例1已知都是正数,求证:
(1)如果积是定值 P, 那么当时,和有最小值
(2)如果和是定值 S ,那么当时,积有最大值证明:因为都是正数,所以
(1)积 xy 为定值 P 时,有
上式当时,取“=”号,因此,当时,和有最小值.
(2)和为定值 S 时,有
上式当时取“=”号,因此,当时,积有最大值.
说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:
(1)函数式中各项必须都是正数;
(2)函数式中含变数的各项的和或积必须是常数;
(3)等号成立条件必须存在.
接下来,我们通过练习来进一步熟悉均值定理的应用.
三、课堂练习
课本P 11练习2,3
要求:学生板演,老师讲评.
课堂小结:
通过本节学习,要求大家掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式,但是在应用时,应注意定理的适用条件.
课后作业:习题6.2 1,2,3,4
板书设计:
§6.2.1 ……
1.重要不等式说明)4.例题……学生
……)……练习
)……
2.均值定理3.几何意义
……
……
第二课时
教学目标:
1.进一步掌握均值不等式定理;
2.会应用此定理求某些函数的最值;
3.能够解决一些简单的实际问题.
教学重点:均值不等式定理的应用
教学难点:
解题中的转化技巧
教学方法:启发式
教学过程:
一、复习回顾
上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.
(学生回答)
利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.
二、讲授新课
例2已知都是正数,求证:
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.
证明:由都是正数,得
即
例3某工厂要建造一个长方体无盖贮水池,其容积为,深为3m,如果池底每的造价为150元,池壁每的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.
解:设水池底面一边的长度为 x m,水池的总造价为 l 元,根据题意,得
当
因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.
评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.
为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.
三、课堂练习
课本P 11练习1,4
要求:学生板演,老师讲评.
课堂小结:
通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.
课后作业:
习题6.2 5,6,7
板书设计:
均值不等式例2 §6.2.2例3学生
定理回顾…… ……
…… …… ……练习
…… …… ……
高二数学教案15
一、教材分析
推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。
二、教学目标
(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式
(2)过程与方法:了解合情推理和演绎推理的区别与联系
(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三、教学重点难点
教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系
教学难点:演绎推理的应用
四、教学方法:探究法
五、课时安排:1课时
六、教学过程
1. 填一填:
① 所有的金属都能够导电,铜是金属,所以 ;
② 太阳系的`大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;
③ 奇数都不能被2整除,2007是奇数,所以 .
2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?
3.小结:
① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.
要点:由_____到_____的推理.
② 讨论:演绎推理与合情推理有什么区别?
③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?
小结:三段论是演绎推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④ 举例:举出一些用三段论推理的例子.
例1:证明函数 在 上是增函数.
例2:在锐角三角形ABC中, ,D,E是垂足. 求证:AB的中点M到D,E的距离相等.
当堂检测:
讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?
讨论:演绎推理怎样才能使得结论正确?
比较:合情推理与演绎推理的区别与联系?
课堂小结
课后练习与提高
1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )
A.一般的原理原则; B.特定的命题;
C.一般的命题; D.定理、公式.
2.因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论).上面的推理的错误是( )
A.大前提错导致结论错; B.小前提错导致结论错;
C.推理形式错导致结论错; D.大前提和小前提都错导致结论错.
3.下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则B =180B.由平面三角形的性质,推测空间四面体的性质;.
4.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.
(2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数.
七、板书设计
八、教学反思
【高二数学教案】相关文章:
高二数学教案12-04
高二数学教案01-26
高二数学教案【精选】10-18
高二数学教案优秀10-12
关于高二数学教案12-16
高二数学教案精品01-24
高二数学教案优秀10-22
关于高二数学教案12-01
高二优秀数学教案11-14
高二数学教案(合集)03-26