高三数学教案

时间:2024-10-31 12:14:13 高三数学教案 我要投稿

高三数学教案

  作为一名教学工作者,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。那要怎么写好教案呢?下面是小编精心整理的高三数学教案,欢迎阅读与收藏。

高三数学教案

高三数学教案1

  1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。

  (1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;

  (2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

  (文)若 为x轴上一点,求证:

  2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。

  (1)求曲线E的方程;

  (2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。

  3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且

  ⑴求椭圆C的离心率;

  ⑵若过A、Q、F三点的圆恰好与直线

  l: 相切,求椭圆C的方程.

  4.设椭圆 的离心率为e=

  (1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

  (2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.

  5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.

  (1)求曲线 的方程;

  (2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.

  6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).

  (Ⅰ)当m+n0时,求椭圆离心率的范围;

  (Ⅱ)直线AB与⊙P能否相切?证明你的结论.

  7.有如下结论:圆 上一点 处的切线方程为 ,类比也有结论:椭圆 处的切线方程为 ,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.

  (1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

  8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

  (Ⅰ)求m的值与椭圆E的方程;

  (Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.

  9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。

  (1)求椭圆的方程;

  (2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。

  10.椭圆方程为 的一个顶点为 ,离心率 。

  (1)求椭圆的方程;

  (2)直线 : 与椭圆相交于不同的两点 满足 ,求 。

  11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .

  (1) 若椭圆的离心率 ,求 的方程;

  (2)若 的圆心在直线 上,求椭圆的方程.

  12.已知直线 与曲线 交于不同的两点 , 为坐标原点.

  (Ⅰ)若 ,求证:曲线 是一个圆;

  (Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.

  13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .

  (1)求椭圆C的方程;

  (2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.

  14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).

  (I)求抛物线方程;

  (II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;

  (III)在(II)的条件下,当 时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.

  15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且

  设点P的轨迹方程为c。

  (1)求点P的轨迹方程C;

  (2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q

  坐标为 求△QMN的面积S的最大值。

  16.设 上的两点,

  已知 , ,若 且椭圆的离心率 短轴长为2, 为坐标原点.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;

  (Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由

  17.如图,F是椭圆 (a0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为 .点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1: 相切.

  (Ⅰ)求椭圆的方程:

  (Ⅱ)过点A的直线l2与圆M交于PQ两点,且 ,求直线l2的方程.

  18.如图,椭圆长轴端点为 , 为椭圆中心, 为椭圆的右焦点,且 .

  (1)求椭圆的标准方程;

  (2)记椭圆的`上顶点为 ,直线 交椭圆于 两点,问:是否存在直线 ,使点 恰为 的垂心?若存在,求出直线 的方程;若不存在,请说明理由.

  19.如图,已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 . 直线 交椭圆于 两不同的点.

  20.设 ,点 在 轴上,点 在 轴上,且

  (1)当点 在 轴上运动时,求点 的轨迹 的方程;

  (2)设 是曲线 上的点,且 成等差数列,当 的垂直平分线与 轴交于点 时,求 点坐标.

  21.已知点 是平面上一动点,且满足

  (1)求点 的轨迹 对应的方程;

  (2)已知点 在曲线 上,过点 作曲线 的两条弦 和 ,且 ,判断:直线 是否过定点?试证明你的结论.

  22.已知椭圆 的中心在坐标原点,焦点在坐标轴上,且经过 、 、 三点.

  (1)求椭圆 的方程:

  (2)若点D为椭圆 上不同于 、 的任意一点, ,当 内切圆的面积最大时。求内切圆圆心的坐标;

  (3)若直线 与椭圆 交于 、 两点,证明直线 与直线 的交点在直线 上.

  23.过直角坐标平面 中的抛物线 的焦点 作一条倾斜角为 的直线与抛物线相交于A,B两点。

  (1)用 表示A,B之间的距离;

  (2)证明: 的大小是与 无关的定值,

  并求出这个值。

  24.设 分别是椭圆C: 的左右焦点

  (1)设椭圆C上的点 到 两点距离之和等于4,写出椭圆C的方程和焦点坐标

  (2)设K是(1)中所得椭圆上的动点,求线段 的中点B的轨迹方程

  (3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究 的值是否与点P及直线L有关,并证明你的结论。

  25.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

  (I)求椭圆 的方程;

  (II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

  (III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

  26.如图所示,已知椭圆 : , 、 为

  其左、右焦点, 为右顶点, 为左准线,过 的直线 : 与椭圆相交于 、

  两点,且有: ( 为椭圆的半焦距)

  (1)求椭圆 的离心率 的最小值;

  (2)若 ,求实数 的取值范围;

  (3)若 , ,

  求证: 、 两点的纵坐标之积为定值;

  27.已知椭圆 的左焦点为 ,左右顶点分别为 ,上顶点为 ,过 三点作圆 ,其中圆心 的坐标为

  (1)当 时,椭圆的离心率的取值范围

  (2)直线 能否和圆 相切?证明你的结论

  28.已知点A(-1,0),B(1,-1)和抛物线. ,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.

  (I)证明: 为定值;

  (II)若△POM的面积为 ,求向量 与 的夹角;

  (Ⅲ) 证明直线PQ恒过一个定点.

  29.已知椭圆C: 上动点 到定点 ,其中 的距离 的最小值为1.

  (1)请确定M点的坐标

  (2)试问是否存在经过M点的直线 ,使 与椭圆C的两个交点A、B满足条件 (O为原点),若存在,求出 的方程,若不存在请说是理由。

  30.已知椭圆 ,直线 与椭圆相交于 两点.

  (Ⅰ)若线段 中点的横坐标是 ,求直线 的方程;

  (Ⅱ)在 轴上是否存在点 ,使 的值与 无关?若存在,求出 的值;若不存在,请说明理由.

  31.直线AB过抛物线 的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.

  (I)求 的取值范围;

  (Ⅱ)过 A、B两点分剐作此撒物线的切线,两切线相交于N点.求证: ∥ ;

  (Ⅲ) 若P是不为1的正整数,当 ,△ABN的面积的取值范围为 时,求该抛物线的方程.

  32.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

  (Ⅰ)当 时,求椭圆的方程及其右准线的方程;

  (Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,与抛物线 交于 、 ,如果以线段 为直径作圆,试判断点 与圆的位置关系,并说明理由;

  (Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

  33.已知点 和动点 满足: ,且存在正常数 ,使得 。

  (1)求动点P的轨迹C的方程。

  (2)设直线 与曲线C相交于两点E,F,且与y轴的交点为D。若 求 的值。

  34.已知椭圆 的右准线 与 轴相交于点 ,右焦点 到上顶点的距离为 ,点 是线段 上的一个动点.

  (I)求椭圆的方程;

  (Ⅱ)是否存在过点 且与 轴不垂直的直线 与椭圆交于 、 两点,使得 ,并说明理由.

  35.已知椭圆C: ( .

  (1)若椭圆的长轴长为4,离心率为 ,求椭圆的标准方程;

  (2)在(1)的条件下,设过定点 的直线 与椭圆C交于不同的两点 ,且 为锐角(其中 为坐标原点),求直线 的斜率k的取值范围;

  (3)如图,过原点 任意作两条互相垂直的直线与椭圆 ( )相交于 四点,设原点 到四边形 一边的距离为 ,试求 时 满足的条件.

  36.已知 若过定点 、以 ( )为法向量的直线 与过点 以 为法向量的直线 相交于动点 .

  (1)求直线 和 的方程;

  (2)求直线 和 的斜率之积 的值,并证明必存在两个定点 使得 恒为定值;

  (3)在(2)的条件下,若 是 上的两个动点,且 ,试问当 取最小值时,向量 与 是否平行,并说明理由。

  37.已知点 ,点 (其中 ),直线 、 都是圆 的切线.

  (Ⅰ)若 面积等于6,求过点 的抛物线 的方程;

  (Ⅱ)若点 在 轴右边,求 面积的最小值.

  38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。

  (1)设F1、F2是椭圆 的两个焦点,点F1、F2到直线 的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。

  (2)设F1、F2是椭圆 的两个焦点,点F1、F2到直线

  (m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。

  (3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。

  (4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。

  39.已知点 为抛物线 的焦点,点 是准线 上的动点,直线 交抛物线 于 两点,若点 的纵坐标为 ,点 为准线 与 轴的交点.

  (Ⅰ)求直线 的方程;(Ⅱ)求 的面积 范围;

  (Ⅲ)设 , ,求证 为定值.

  40.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

  (I)求椭圆 的方程;

  (II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

  (III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

  41.已知以向量 为方向向量的直线 过点 ,抛物线 : 的顶点关于直线 的对称点在该抛物线的准线上.

  (1)求抛物线 的方程;

  (2)设 、 是抛物线 上的两个动点,过 作平行于 轴的直线 ,直线 与直线 交于点 ,若 ( 为坐标原点, 、 异于点 ),试求点 的轨迹方程。

  42.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

  (Ⅰ)当 时,求椭圆的方程及其右准线的方程;

  (Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,

  与抛物线 交于 、 ,如果以线段 为直径作圆,

  试判断点 与圆的位置关系,并说明理由;

  (Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

  43.设椭圆 的一个顶点与抛物线 的焦点重合, 分别是椭圆的左、右焦点,且离心率 且过椭圆右焦点 的直线 与椭圆C交于 两点.

  (Ⅰ)求椭圆C的方程;

  (Ⅱ)是否存在直线 ,使得 .若存在,求出直线 的方程;若不存在,说明理由.

  (Ⅲ)若AB是椭圆C经过原点O的弦, MN AB,求证: 为定值.

  44.设 是抛物线 的焦点,过点M(-1,0)且以 为方向向量的直线顺次交抛物线于 两点。

  (Ⅰ)当 时,若 与 的夹角为 ,求抛物线的方程;

  (Ⅱ)若点 满足 ,证明 为定值,并求此时△ 的面积

  45.已知点 ,点 在 轴上,点 在 轴的正半轴上,点 在直线 上,且满足 .

  (Ⅰ)当点 在 轴上移动时,求点 的轨迹 的方程;

  (Ⅱ)设 、 为轨迹 上两点,且 0, ,求实数 ,

  使 ,且 .

  46.已知椭圆 的右焦点为F,上顶点为A,P为C 上任一点,MN是圆 的一条直径,若与AF平行且在y轴上的截距为 的直线 恰好与圆 相切。

  (1)已知椭圆 的离心率;

  (2)若 的最大值为49,求椭圆C 的方程.

高三数学教案2

  一、教学内容分析

  本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

  二、学生学习情况分析

  本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解。但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

  三、设计思想

  以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

  四、教学目标

  1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;

  2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;

  3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性。

  五、教学重点和难点

  重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;

  难点:二元一次不等式所表示的'平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究。

  六、教学基本流程

  第一课时,利用生动的情景激起学生求知的__,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔。通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

  第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域。让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

  第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤。通过例5的展示让学生从动态的角度感受图解法。最后再现情景1,并对之作出完美的解答。

  第四课时,给出新的引例,让学生体会到线性规划问题的普遍性。让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程。总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

高三数学教案3

 本文题目:高三数学教案:三角函数的周期性

  一、学习目标与自我评估

  1 掌握利用单位圆的几何方法作函数 的图象

  2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

  3 会用代数方法求 等函数的周期

  4 理解周期性的几何意义

  二、学习重点与难点

  周期函数的概念, 周期的求解。

  三、学法指导

  1、 是周期函数是指对定义域中所有 都有

  ,即 应是恒等式。

  2、周期函数一定会有周期,但不一定存在最小正周期。

  四、学习活动与意义建构

  五、重点与难点探究

  例1、若钟摆的高度 与时间 之间的函数关系如图所示

  (1)求该函数的周期;

  (2)求 时钟摆的高度。

  例2、求下列函数的周期。

  (1) (2)

  总结:(1)函数 (其中 均为常数,且

  的周期T= 。

  (2)函数 (其中 均为常数,且

  的周期T= 。

  例3、求证: 的周期为 。

  例4、(1)研究 和 函数的图象,分析其周期性。

  (2)求证: 的周期为 (其中 均为常数,

  且

  总结:函数 (其中 均为常数,且

  的周期T= 。

  例5、(1)求 的周期。

  (2)已知 满足 ,求证: 是周期函数

  课后思考:能否利用单位圆作函数 的图象。

  六、作业:

  七、自主体验与运用

  1、函数 的周期为 ( )

  A、 B、 C、 D、

  2、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  3、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  4、函数 的周期是 ( )

  A、 B、 C、 D、

  5、设 是定义域为R,最小正周期为 的`函数,

  若 ,则 的值等于 ()

  A、1 B、 C、0 D、

  6、函数 的最小正周期是 ,则

  7、已知函数 的最小正周期不大于2,则正整数

  的最小值是

  8、求函数 的最小正周期为T,且 ,则正整数

  的最大值是

  9、已知函数 是周期为6的奇函数,且 则

  10、若函数 ,则

  11、用周期的定义分析 的周期。

  12、已知函数 ,如果使 的周期在 内,求

  正整数 的值

  13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

  函数关系如图所示:

  (1) 求该函数的周期;

  (2) 求 时,该质点离开平衡位置的位移。

  14、已知 是定义在R上的函数,且对任意 有

  成立,

  (1) 证明: 是周期函数;

  (2) 若 求 的值。

高三数学教案4

  内容提要:本文把常见的排列问题归纳成三种典型问题,并在排列的一般规定性下,对每一种类型的问题通过典型例题归纳出相应的解决方案,并附以近年的高考原题及解析,使我们对排列问题的认识更深入本质,对排列问题的解决更有章法可寻。

  关键词: 特殊优先,大元素,捆绑法,插空法,等机率法

  排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列

  问题归纳为三种类型来解决:

  下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研。

  一、能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)

  解决此类问题的关键是特殊元素或特殊位置优先。或使用间接法。

  例1:(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

  (2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

  (3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

  (4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?

  解析:

  (1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;

  (2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;

  (3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;

  (4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种。

  例2。某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?

  解法1:对特殊元素数学和体育进行分类解决

  (1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;

  (2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;

  (3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;

  (4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种

  解法2:对特殊位置第一节和第六节进行分类解决

  (1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;

  (2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;

  (3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;

  (4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种。

  解法3:本题也可采用间接排除法解决

  不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的'情况 种所以符合条件的排法共有 种

  附:

  1、(2005北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )

  (A) 种 (B) 种 (C) 种 (D) 种

  解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种。故选(B)。

  2、(2005全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个。

  解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种。

  3、(2005福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )

  A、300种 B、240种 C、144种 D、96种

  解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种。故选(B)。

  上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然。

  二、相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)

  相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法。不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法。

  例3:7位同学站成一排,

  (1)甲、乙和丙三同学必须相邻的排法共有多少种?

  (2)甲、乙和丙三名同学都不能相邻的排法共有多少种?

  (3)甲、乙两同学间恰好间隔2人的排法共有多少种?

  解析:

  (1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,

  第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;

  (2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有 种排法,所以总的排法共有 种。

  附:1、(2005辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个。(用数字作答)

  解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数。

  2、 (2004。 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,

  二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰

  好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )

  A、B、C、D。

  解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 。故选( B )。

  3、(2003京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A、42 B、30 C、20 D、12

  解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法。故选( A )。

  三、机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)

  解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决。

  例4、 7位同学站成一排。

  (1)甲必须站在乙的左边?

  (2)甲、乙和丙三个同学由左到右排列?

  解析:

  (1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;

  (2)参见(1)的分析得 (或 )。

  本文通过较为清晰的脉络把排列问题分为三种类型,使我们对排列问题有了比较系统的认识。但由于排列问题种类繁多,总会有些问题不能囊括其中,也一定存在许多不足,希望读者能和我一起研究完善。

高三数学教案5

  一、教学内容分析

  二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

  二、教学目标设计

  理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

  三、教学重点及难点

  二面角的平面角的概念的形成以及二面角的平面角的作法.

  四、教学流程设计

  五、教学过程设计

  一、 新课引入

  1.复习和回顾平面角的有关知识.

  平面中的角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角

  图形

  结构 射线—点—射线

  表示法 ∠AOB,∠O等

  2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

  3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的.开关.)从而,引出“二面角”的定义及相关内容.

  二、学习新课

  (一)二面角的定义

  平面中的角 二面角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

  图形

  结构 射线—点—射线 半平面—直线—半平面

  表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

  (二)二面角的图示

  1.画出直立式、平卧式二面角各一个,并分别给予表示.

  2.在正方体中认识二面角.

  (三)二面角的平面角

  平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

  1.二面角的平面角的定义(课本P17).

  2.∠AOB的大小与点O在棱上的位置无关.

  [说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

  ②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

  ③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

  3.二面角的平面角的范围:

  (四)例题分析

  例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

  [说明] ①检查学生对二面角的平面角的定义的掌握情况.

  ②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

  例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

  [说明] ①求二面角的步骤:作—证—算—答.

  ②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

  例3 已知正方体 ,求二面角 的大小.(课本P18例1)

  [说明] 使学生进一步熟悉作二面角的平面角的方法.

  (五)问题拓展

  例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

  [说明]使学生明白数学既来源于实际又服务于实际.

  三、巩固练习

  1.在棱长为1的正方体 中,求二面角 的大小.

  2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

  四、课堂小结

  1.二面角的定义

  2.二面角的平面角的定义及其范围

  3.二面角的平面角的常用作图方法

  4.求二面角的大小(作—证—算—答)

高三数学教案6

  教学目标:

  结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  教学重点:

  掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  教学过程

  一、复习

  二、引入新课

  1.假言推理

  假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

  (1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

  (2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

  2.三段论

  三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

  3.关系推理指前提中至少有一个是关系判断的.推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

  (1)对称性关系推理是根据关系的对称性进行的推理。

  (2)反对称性关系推理是根据关系的反对称性进行的推理。

  (3)传递性关系推理是根据关系的传递性进行的推理。

  (4)反传递性关系推理是根据关系的反传递性进行的推理。

  4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

  オネ耆归纳推理可用公式表示如下:

  オS1具有(或不具有)性质P

  オS2具有(或不具有)性质P……

  オSn具有(或不具有)性质P

  オ(S1S2……Sn是S类的所有个别对象)

  オニ以,所有S都具有(或不具有)性质P

  オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

  小结:本节课学习了演绎推理的基本模式.

高三数学教案7

  【教学目的】

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  【重点难点】

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教具:多媒体、实物投影仪

  【内容分析】

  集合是中学数学的.一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明。

高三数学教案8

  典例精析

  题型一 求函数f(x)的单调区间

  【例1】已知函数f(x)=x2-ax-aln(x-1)(a∈R),求函数f(x)的单调区间.

  【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+∞).

  f′(x)=2x-a-ax-1=2x(x-a+22)x-1,

  ①若a≤0,则a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0时,f(x)的增区间为(1,+∞).

  ②若a>0,则a+22>1,

  故当x∈(1,a+22]时,f′(x)=2x(x-a+22)x-1≤0;

  当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,

  所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).

  【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.

  【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范围.

  【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,

  所以2x+1x-a≥0在(0,1)上恒成立,

  即a≤2x+1x恒成立.

  又2x+1x≥22(当且仅当x=22时,取等号).

  所以a≤22,

  故a的取值范围为(-∞,22].

  【点拨】当f(x)在区间(a,b)上是增函数时f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的'条件来求参数的取值范围了.

  题型二 求函数的极值

  【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.

  (1)试求常数a,b,c的值;

  (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.

  【解析】(1)f′(x)=3ax2+2bx+c.

  因为x=±1是函数f(x)的极值点,

  所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.

  由根与系数的关系,得

  又f(1)=-1,所以a+b+c=-1. ③

  由①②③解得a=12,b=0,c=-32.

  (2)由(1)得f(x)=12x3-32x,

  所以当f′(x)=32x2-32>0时,有x<-1或x>1;

  当f′(x)=32x2-32<0时,有-1

  所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.

  所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.

  【点拨】求函数的极值应先求导数.对于多项式函数f(x)来讲, f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是, 当x0满足f′(x0)=0时, f(x)在点x=x0处却未必取得极 值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.

  【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x13,则有( )

  A. f(x1)f(x2)

  C. f(x1)=f(x2) D.不确定

  【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.

  题型三 求函数的最值

  【例3】 求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.

  【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.

  又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理, 得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.

  【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.

  【变式训练3】(20xx江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a= .

  【解析】若x=0,则无论a为 何值,f(x)≥0恒成立.

  当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,

  设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,

  x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.

  因此g(x)max=g(12)=4,所以a≥4.

  当x∈[-1,0)时,f(x)≥0可以化为

  a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,

  g(x)min=g(-1)=4,所以a≤4.

  综上可知,a=4.

  总结提高

  1.求函数单调区间的步骤是:

  (1)确定函数f(x)的定义域D;

  (2)求导数f′(x);

  (3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.

  2.求函数极值的步骤是:

  (1)求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.

  3.求函数最值的步骤是:

  先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

高三数学教案9

  教学目标

  进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

  教学重难点

  教学重点:熟练运用定理.

  教学难点:应用正、余弦定理进行边角关系的相互转化.

  教学过程

  一、复习准备:

  1.写出正弦定理、余弦定理及推论等公式.

  2.讨论各公式所求解的三角形类型.

  二、讲授新课:

  1.教学三角形的解的讨论:

  ①出示例1:在△ABC中,已知下列条件,解三角形.

  分两组练习→讨论:解的个数情况为何会发生变化?

  ②用如下图示分析解的情况.(A为锐角时)

  ②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

  2.教学正弦定理与余弦定理的活用:

  ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

  分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.

  ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

  分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断

  ③出示例4:已知△ABC中,试判断△ABC的'形状.

  分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

  3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

高三数学教案10

  【教学目标】:

  (1)知识目标:

  通过实例,了解简单的逻辑联结词“且”、“或”的含义;

  (2)过程与方法目标:

  了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的.判断;

  (3)情感与能力目标:

  在知识学习的基础上,培养学生简单推理的技能。

  【教学重点】:

  通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。

  【教学难点】:

  简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。

  【教学过程设计】:

  教学环节教学活动设计意图

  情境引入问题:

  下列三个命题间有什么关系?

  (1)12能被3整除;

  (2)12能被4整除;

  (3)12能被3整除且能被4整除;通过数学实例,认识用用逻辑联结词“且”联结两个命题可以得到一个新命题;

  知识建构归纳总结:

  一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

  记作,读作“p且q”。

  引导学生通过通过一些数学实例分析,概括出一般特征。

  1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。

  2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

  归纳总结:

  当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,

  学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。

  引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

高三数学教案11

  【教学目标】

  1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  2.能根据几何结构特征对空间物体进行分类。

  3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

  【教学重难点】

  教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  教学难点:柱、锥、台、球的结构特征的概括。

  【教学过程】

  1.情景导入

  教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

  2.展示目标、检查预习

  3.合作探究、交流展示

  (1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

  (2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。有两个面互相平行;其余各面都是平行四边形;每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  (3)提出问题:请列举身边的棱柱并对它们进行分类

  (4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  (5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的.概念及圆柱的表示。

  (6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  (7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  (1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

  (2)棱柱的任何两个平面都可以作为棱柱的底面吗?

  (3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  (5)绕直角三角形某一边的几何体一定是圆锥吗?

  5.典型例题

  例:判断下列语句是否正确。

  ⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

  ⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

  答案AB

  6.课堂检测:

  课本P8,习题1.1A组第1题。

  7.归纳整理

  由学生整理学习了哪些内容

高三数学教案12

  【学习目标】

  一、过程目标

  1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

  2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

  3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

  二、识技能目标

  1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

  2掌握对数函数的性质,并能初步应用对数的`性质解决简单问题。

  三、情感目标

  1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。

  2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

  教学重点难点:

  1对数函数的定义、图象和性质。

  2对数函数性质的初步应用。

  教学工具:多媒体

  【学前准备】对照指数函数试研究对数函数的定义、图象和性质。

高三数学教案13

  教学目标

  (1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。

  (2)正确对复数进行分类,掌握数集之间的从属关系;

  (3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。

  (4)培养学生数形结合的数学 思想,训练学生条理的逻辑思维能力.

  教学建议

  (一)教材分析

  1 、知识结构

  本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.

  2 、重点、难点分析

  (1)正确复数的实部与虚部

  对于复数,实部是,虚部是.注意在说复数时,一定有,否则,不能说实部是,虚部是,复数的实部和虚部都是实数。

  说明:对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。

  (2)正确地对复数进行分类,弄清数集之间的关系

  分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:

  注意分清复数分类中的界限:

  ①设,则为实数

  ②为虚数

  ③且。

  ④为纯虚数且

  (3)不能乱用复数相等的条件解题.用复数相等的条件要注意:

  ①化为复数的标准形式

  ②实部、虚部中的字母为实数,即

  (4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:

  ①任何一个复数都可以由一个有序实数对( )唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.

  ②复数用复平面内的点Z( )表示.复平面内的`点Z的坐标是( ),而不是( ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是.由于=0+1 ?,所以用复平面内的点(0,1)表示时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数时,不能以为这一点到原点的距离就是虚数单位,或者就是纵轴的单位长度.

  ③当时,对任何,是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当时,是实数.所以,纵轴去掉原点后称为虚轴.

  由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.

  ④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.

  (5)关于共轭复数的概念

  设,则,即与的实部相等,虚部互为相反数(不能认为与或是共轭复数).

  教师可以提一下当时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当时,与互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.

  (6)复数能否比较大小

  教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:

  ①根据两个复数相等地定义,可知在两式中,只要有一个不成立,那么.两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.

  ②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘ < ’,都不能使这关系同时满足实数集中大小关系地四条性质”:

  (i)对于任意两个实数a,b来说,a<b,a=b,b<a这三种情形有且仅有一种成立;

  (ii)如果a<b,b<c,那么a<c;

  (iii)如果a<b,那么a+c<b+c;

  (iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)

  (二)教法建议

  1.要注意知识的连续性:复数是二维数,其几何意义是一个点,因而注意与平面解析几何的联系.

  2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学 思想.

  3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.

  复数的有关概念

  教学目标

  1.了解复数的实部,虚部;

  2.掌握复数相等的意义;

  3.了解并掌握共轭复数,及在复平面内表示复数.

  教学重点

  复数的概念,复数相等的充要条件.

  教学难点

  用复平面内的点表示复数M.

  教学用具:直尺

  课时安排:1课时

  教学过程

  一、复习提问:

  1.复数的定义。

  2.虚数单位。

  二、讲授新课

  1.复数的实部和虚部:

  复数中的a与b分别叫做复数的实部和虚部。

  2.复数相等

  如果两个复数与的实部与虚部分别相等,就说这两个复数相等。

  即:的充要条件是且。

  例如:的充要条件是且。

  例1:已知其中,求 x y .

  解:根据复数相等的意义,得方程组:

  ∴

  例2: m 是什么实数时,复数,

  (1)是实数,(2)是虚数,(3)是纯虚数.

  解:

  (1) ∵时, z 是实数,

  ∴ ,或.

  (2) ∵时, z 是虚数,

  ∴,且

  (3) ∵且时,

  z 是纯虚数. ∴

  3.用复平面(高斯平面)内的点表示复数

  复平面的定义

  建立了直角坐标系表示复数的平面,叫做复平面.

  复数可用点来表示.(如图)其中 x 轴叫实轴, y 轴除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴 x 上,不在虚轴上.

  4.复数的几何意义:

  复数集 c 和复平面所有的点的集合是一一对应的.

  5.共轭复数

  (1)当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)

  (2)复数 z 的共轭复数用表示.若,则:;

  (3)实数 a 的共轭复数仍是 a 本身,纯虚数的共轭复数是它的相反数.

  (4)复平面内表示两个共轭复数的点z与关于实轴对称.

  三、练习1,2,3,4.

  四、小结:

  1.在理解复数的有关概念时应注意:

  (1)明确什么是复数的实部与虚部;

  (2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;

  (3)弄清复平面与复数的几何意义;

  (4)两个复数不全是实数就不能比较大小。

  2.复数集与复平面上的点注意事项:

  (1)复数中的 z ,书写时小写,复平面内点Z( a b )中的Z,书写时大写。

  (2)复平面内的点Z的坐标是( a b ),而不是( a bi ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 i

  (3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。

  (4)复数集C和复平面内所有的点组成的集合一一对应:

  五、作业1,2,3,4,

高三数学教案14

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

  四、教学重难点1、一次函数、正比例函数的概念及关系。   2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的.长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

  (2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x)接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解例1:下列函数中,y是x的一次函数的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

高三数学教案15

  1.数列的概念和简单表示法?

  (1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);? (2)了解数列是自变量为正整数的一类函数.?

  2.等差数列、等比数列?

  (1)理解等差数列、等比数列的概念;?

  (2)掌握等差数列、等比数列的通项公式与前n项和公式;?

  (3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?

  (4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;

  2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?

  本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一 个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

  知识网络

  6.1 数列的概念与简单表示法

  典例精析

  题型一 归纳、猜想法求数列通项

  【例1】根据下列数列的前几项,分别写出它们的一个通项公式:

  (1)7,77,777,7 777,

  (2)23,-415,635,-863,

  (3)1,3,3,5,5,7,7,9,9,

  【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),

  故an=79(10n-1).

  (2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57, ,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .

  (3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.

  故数列的通项公式为an=n+ .

  【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.

  【变式训练1】如下表定义函数f(x):

  x 1 2 3 4 5

  f(x) 5 4 3 1 2

  对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2 008的值是()

  A.1 B.2 C.3 D.4

  【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an.

  所以a2 008=a4=2,故选B.

  题型二 应用an= 求数列通项

  【例2】已知数列{an}的前n项和Sn,分别求其通项公式:

  (1)Sn=3n-2;

  (2)Sn=18(an+2)2 (an0).

  【解析】(1)当n=1时,a1=S1=31-2=1,

  当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,

  又a1=1不适合上式,

  故an=

  (2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,

  当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,

  所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,

  又an0,所以an-an-1=4,

  可知{an}为等差数列,公差为4,

  所以an=a1+(n-1)d=2+(n-1)4=4n-2,

  a1=2也适合上式,故an=4n-2.

  【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.

  【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()

  A.2n-1 B.(n+1n)n-1 C.n2 D.n

  【解析】由an=n(an+1-an)an+1an=n+1n.

  所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D.

  题型三 利用递推关系求数列的通项

  【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:

  (1)an+1=an1+2an;(2)an+1=2an+2n+1.

  【解析】(1)因为对于一切nN*,an0,

  因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.

  所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.

  (2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.

  所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.

  【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.

  【变式训练3】设{an}是首项为1的.正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.

  【解析】因为数列{an}是首项为1的正项数列,

  所以anan+10,所以(n+1)an+1an-nanan+1+1=0,

  令an+1an=t,所以(n+1)t2+t-n=0,

  所以[(n+1)t-n](t+1)=0,

  得t=nn+1或t=-1(舍去),即an+1an=nn+1.

  所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n.

  总结提高

  1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.

  2.由Sn求an时,要分n=1和n2两种情况.

  3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

  6.2 等差数列

  典例精析

  题型一 等差数列的判定与基本运算

  【例1】已知数列{an}前n项和Sn=n2-9n.

  (1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.

  【解析】(1)证明:n=1时,a1=S1=-8,

  当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,

  当n=1时,也适合该式,所以an=2n-10 (nN*).

  当n2时,an-an-1=2,所以{an}为等差数列.

  (2)因为n5时,an0,n6时,an0.

  所以当n5时,Tn=-Sn=9n-n2,

  当n6时,Tn=a1+a2++a5+a6++an

  =-a1-a2--a5+a6+a7++an

  =Sn-2S5=n2-9n-2(-20)=n2-9n+40,

  所以,

  【点拨】根据定义法判断数列为等差数列,灵活运用求 和公式.

  【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}()

  A.是等差数列,但不是等比数列 B.是等比数列,但不是等差数列

  C.既是等差数列,又是等比数列 D.既不是等差数列,又不是等比数列

  【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.

  所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.

  题型二 公式的应用

  【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.

  (1)求公差d的取值范围;

  (2)指出S1,S2,,S12中哪一个值最大,并说明理由.

  【解析】(1)依题意,有

  S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,

  即

  由a3=12,得a1=12-2d.③

  将③分别代入①②式,得

  所以-247

  (2)方法一:由d0可知a1a3a13,

  因此,若在112中存在自然数n,使得an0,an+10,

  则Sn就是S1,S2,,S12中的最大值.

  由于S12=6(a6+a7)0,S13=13a70,

  即a6+a70,a70,因此a60,a70,

  故在S1,S2,,S12中,S6的值最大.

  方法二:由d0可知a1a3a13,

  因此,若在112中存在自然数n,使得an0,an+10,

  则Sn就是S1,S2,,S12中的最大值.

  故在S1,S2,,S12中,S6的值最大.

  【变式训练2】在等差数列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.

  【解析】由题意知 又因为公差d0,所以a2 0080,a2 0090. 当

  n=4 015时,S4 015=a1+a4 01524 015=a2 0084 015当n=4 016时,S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以满足条件Sn0的最大自然数n=4 015.

  题型三 性质的应用

  【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.

  (1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;

  (2)该地区9月份(共30天)该病毒新感染者共有多少人?

  【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.

  所以9月10日的新感染者人数为40+(10-1)40=400(人).

  所以9月11日的新感染者人数为400-10=390(人).

  (2)9月份前10天的新感染者人数和为S10=10(40+400)2=2 200(人),

  9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.

  所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5 900(人).

  所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).

  【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为

  .

  【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,

  所以5+3d23+d,即5+3d6+2d,所以d1,

  所以a43+1=4,故a4的最大值为4.

  总结提高

  1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.

  2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的

  3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a +d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.

  4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.

  6.3 等比数列

  典例精析

  题型一 等比数列的基本运算与判定

  【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求证:

  (1)数列{Snn}是等比数列;(2)Sn+1=4an.

  【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,

  所以(n+2)Sn=n(Sn+1-Sn).

  整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,

  故{Snn}是以2为公比的等比数列.

  (2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),

  于是Sn+1=4(n+1)Sn-1n-1=4an(n2).

  又a2=3S1=3,故S2=a1+a2=4.

  因此对于任意正整数n1,都有Sn+1=4an.

  【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使 用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1 =anan+2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.

  【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2an,则当f(n)最大时,n的值为()

  A.7 B.8 C.9 D.10

  【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此时n=9.故选C.

  题型二 性质运用

  【例2】在等比数列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).

  (1)求an;

  (2)若Tn=lg a1+lg a2++lg an,求Tn.

  【解析】(1)由等比数列的性质可知a1a6=a3a4=32,

  又a1+a6=33,a1a6,解得a1=32,a6=1,

  所以a6a1=132,即q5=132,所以q=12,

  所以an=32(12)n-1=26-n .

  (2)由等比数列的性质可知,{lg an}是等差数列,

  因为lg an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,

  所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.

  【点拨】历年高考对性质考查较多,主要是利用等积性,题目小而巧且背景不断更新,要熟练掌握.

  【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?

  【解析】由题设可知,如果am=0,在等差数列中有

  a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,

  我们知道,如果m+n=p+q,则am+an=ap+aq,

  而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,

  所以可以得出结论:

  若bm=1,则有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.

  在本题中则有b1b2bn=b1b2b37-n(n37,nN*).

  题型三 综合运用

  【例3】设数列{an}的前n 项和为Sn,其中an0,a1为常数,且-a1,Sn,an+1成等差数列.

  (1)求{an}的通项公式;

  (2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.

  【解析】(1)由题意可得2Sn=an+1-a1.

  所以当n2时,有

  两式相减得an+1=3an(n2).

  又a2=2S1+a1=3a1,an0,

  所以{an}是以首项为a1,公比为q=3的等比数列.

  所以an=a13n-1.

  (2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.

  要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.

  所以{bn}是首项 为3,公比为q=3的等比数列.

  所以{bn}能为等比数列,此时a1=-2.

  【变式训练3】已知命题:若{an}为等 差数列,且am=a,an=b(m0,nN*)为等比数列,且bm=a,bn=b(m

  【解析】n-mbnam.

  总结提高

  1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可知三求二,通过求和与通项两公式列方程组求解.

  2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n2),再引入辅助数列,转化为等比数列问题求解.

  3.分类讨论思想:当a10,q1或a10,00,01时,{an}为递减数列;q0时,{an}为摆动数列;q=1时,{an}为常数列.

  6.4 数列求和

  典例精析

  题型一 错位相减法求和

  【例1】求和:Sn=1a+2a2+3a3++nan.

  【解 析】(1)a=1时,Sn=1+2+3++n=n(n+1)2.

  (2)a1时,因为a0,

  Sn=1a+2a2+3a3++nan,①

  1aSn=1a2+2a3++n-1an+nan+1.②

  由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,

  所以Sn=a(an-1)-n(a-1)an(a-1)2.

  综上所述,Sn=

  【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;

  (2)当等比数列公比为字母时,应对字母是否为1进行讨论;

  (3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.

  【变式训练1】数列{2n-32n-3}的前n项和为()

  A.4-2n-12n-1 B.4+2n-72n-2 C.8-2n+12n-3 D.6-3n+22n-1

  【解析】取n=1,2n-32n-3=-4.故选C.

  题型二 分组并项求和法

  【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1).

  【解析】和式中第k项为ak =1+12+14++12k-1=1-(12)k1-12=2(1-12k).

  所以Sn=2[(1-12)+(1-122)++(1-12n)]

  = -(12+122++12n)]

  =2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.

  【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n项和为()

  A.2n-1 B.n2n-n

  C.2n+1-n D.2n+1-n-2

  【解析】an=1+2+22++2n-1=2n-1,

  Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故选D.

  题型三 裂项相消法求和

  【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).

  (1)求数列{an}的通项公式;

  (2)设bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若对任意非零自然数n,Tnm32恒成立,求m的最大整数值.

  【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,

  从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,

  所以an=8+(n-1)(-2)=10-2n.

  (2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),

  所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]

  =14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,

  上式对一切nN*恒成立.

  所以m12-8n+1-8n+2对一切nN*恒成立.

  对nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,

  所以m163,故m的最大整数值为5.

  【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.

  (2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.

  【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(nN*),则数列{cn}的前10项和为()

  A.A10+B10 B.A10+B102 C.A10B10 D.A10B10

  【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.

  总结提高

  1.常用的 基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.

  2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.

  6.5 数列的综合应用

  典例精析

  题型一 函数与数列的综合问题

  【例1】已知f(x)=logax(a0且a1),设f(a1),f(a2),,f(an)(nN*)是首项为4,公差为2的等差数列.

  (1)设a是常数,求证:{an}成等比数列;

  (2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.

  【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,

  所以anan-1=a2n+2a2n=a2(n2)为定值,所以{an}为等比数列.

  (2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,

  当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,

  Sn=223+324+425++(n+1 ) 2n+2,

  2Sn=224+325++n2n+2+(n+1)2n+3,

  两式相减得

  -Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,

  所以Sn=n2n+3.

  【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.

  【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()

  A.nn+1 B.n+2n+1 C.nn+1 D.n+1n

  【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.

  所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.

  所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故选C.

  题型二 数列模型实际应用问题

  【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.

  (1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;

  (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?

  【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,

  即an+1=80%an+16%=45an+425.

  (2)由an+1=45an+425有,an+1-45=45(an-45),

  又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,

  若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,

  (n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,

  所以n1+lg 21-3lg 24,nN*,

  所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.

  【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.

  【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以前进3步,然后再后退2步的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()

  A.P(2 006)=402 B.P(2 007)= 403

  C.P(2 008)=404 D.P(2 009)=405

  【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2 006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+

  3=404,P(2 009)=404-1=403.故D错.

  题型三 数列中的探索性问题

  【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.

  (1)对nN*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;

  (2)若数列{bn}满足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),,(n,bn)在同一直线上,并求此直线方程.

  【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.

  (2)由已知有Cn=22n-3,由log2Cn的表达式可知:

  2(b1+2b2++nbn)=n(n+1)(2n-3),①

  所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②

  ①-②得bn=3n-4,所以{bn}为等差数列.

  故点列(1,b1),(2,b2),,(n,bn)共线,直线方程为y=3x-4.

  【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(nN*).若a11,a43,S39,则通项公式an=.

  【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.

  由a11,a43,S39得

  令x=a1,y=d得

  在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.

  总结提高

  1.数列模型应用问题的求解策略

  (1)认真审题,准确理解题意;

  (2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;

  (3)验证、反思结果与实际是否相符.

  2.数列综合问题的求解策略

  (1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;

  (2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.

【高三数学教案】相关文章:

高三数学教案11-07

人教版高三数学教案12-13

高三数学教案15篇11-08

【优】人教版高三数学教案06-19

高三数学教案(15篇)11-09

高三数学教案(集锦15篇)02-17

高三数学教案(汇编15篇)02-17

人教版高三数学教案5篇01-16

高三数学教案(通用14篇)06-18