- 相关推荐
遵循规律灵活运算——整数四则混合运算和简便运算教学
遵循规律灵活运算——整数四则混合运算和简便运算教学学生掌握了整数的口算和笔算方法之后,将继续学习四则混合运算的简便运算。教学中要注重遵循规律, 综合发挥学生已掌握的口算、笔算技能,使计算能力和思维的灵活性得到进一步提高。整数四则混合运算的顺 序以及简便运算的方法,以后还要迁移到小数、分数的运算范畴。因此,整数四则混合运算和简便运算是很重 要的教学内容。
整数四则混合运算教学
新教材把整数四则混合运算的教学分为三个环节。
第一册到第三册是混合运算初步教学阶段,教学由百以内加减法组成的两步式题、由表内乘除法组成的两 步式题、很简单的乘加(减)与有小括号的两步式题。在这一环节中,四则混合运算教学有三个特点:一是以 口算为主;二是解题时只要求写出两步式题的最后结果;三是辅助相关知识的教学,如乘加(减)两步式题能 帮助学生了解相邻两句乘法口诀之间的联系。
四则混合运算教学的第二个环节是第四册各种运算顺序的教学,它有两个特点:一是用四句话概括表述了 常用的混合运算顺序,“在没有括号的算式里,如果只有加减法或者只有乘除法,都要从左往右按顺序运算” ,“在没有括号的算式里,有乘法和加、减法,都要先算乘法”,“在没有括号的算式里,有除法和加、减法 ,都要先算除法”,“算式里有括号,要先算括号里面的”.第四册教材暂时把“先乘除、后加减”分成两句 话表述,适当降低了教学要求;第二个特点是解题时要写出每步计算的结果,以表明运算顺序。
四则混合运算教学的第三个环节是第五册到第八册,在学生初步掌握混合运算顺序的基础上,教学三步计 算的式题。它也有两个特点:一是由易到难,先教学比较容易的三步式题,如16×4+6×3,然后教学稍难些的 三步式题,如74+100÷5×3;二是式题中有乘、除数是两、三位数的乘、除法,计算比较复杂,容易出现错误 .
学生掌握四则混合运算顺序的过程是先“知道”,再“应用”.
“知道”混合运算顺序的主要思维形式是归纳推理,要在分析、比较的基础上进行抽象概括。如第四册教 学只有同级运算的两步式题时,出示四道题:24+8-6,47-10+5,3×6÷9,28÷7×6.先让学生逐题算出结果 ,再带着“每个算式里含有哪些运算,它们的运算顺序怎样?”这两个问题去观察思考,得出结论。
“应用”混合运算顺序的主要思维形式是演绎推理,思维活动顺次分成三步:观察式题中有没有括号及各 个运算符号→回忆有关的运算顺序→按运算顺序确定计算步骤。如100-(32+540÷18),看到算式中有括号,立 即想到运算顺序“算式里有括号,要先算括号里面的”,确定应该先算32+540÷18;又看到括号里有加法和除 法,立即想到运算顺序“有除法和加减法,要先算除法”,确定应该先算540÷18.
学生计算四则混合运算式题时常见的错误与分析。
(1)运算顺序错误。如328-76+24=328-100=228,600÷25×4=600÷100=6,60-20÷4=40÷4=10等。发生这 些错误的原因是学生对运算顺序认识不清,他们不是从对算式中各种运算符号的分析中判断运算顺序,而是被 算式中某些数之间的“特殊关系”所干扰。针对这种错误,一要加强“说题→说运算顺序→说先算什么”的训 练;二要让学生在第一步计算的部分下面画“横线”标记,如 328-76+24,600÷25×4,60-20÷4; ─── ──── ───
三要把易混易错的题放在一起进行对比,引起学生的注意,如180÷60×3与180-60×3,20×(30-18)与20 ×30-18等。
(2)把第一步算得的结果都写在算式前面的错误,如120-27×4=108-120=12.出现这种错误的原因是学生的 思维与动作处于“简单同步”状态,还不能真正协调。针对这种错误要指导学生分析混合运算式题的意义,如 120-27×4是从120里减去27乘以4的积,求差是多少,27乘以4的积是减数。
(3)过失性错误。学生进行四则混合运算时,抄错数或计算错误是极普遍的错误。原因在于学生对四则混合 运算缺少兴趣,计算时情绪低沉,造成计算过程中注意力不集中、分配不合理、转移不及时,再加上部分学生 的口算、笔算不过关。为此,在四则混合运算教学中,一要继续重视口算、笔算基本功的训练,尽量提高学生 计算的正确率;二要指导学生用好草稿;三要创造安静的作业环境;四要提高学生对混合运算的热情与信心。
简便运算教学
理解运算定律、运算性质是学习简便运算的前提。
许多简便运算都是充分合理地应用运算定律、性质的结果。如果学生没有理解运算定律、性质,简便运算 就是无本之木、无源之水,只能是照葫芦画瓢,在题目明确要求用简便方法时才简算,题目没有明确要求用简 便方法计算时,即使算式有简算条件,也不会自觉地采用简便方法计算。因此,教材在每次教学简便运算前都 有计划地安排运算定律、性质的教学。
一种是把运算性质安排在习题中,让学生通过解答习题,了解运算性质。如第七册练习六第16、17两题, 填写下表,说一说:什么数没变?什么数变化了?怎么变化的? 加数 280 280 280 280 280 280 加数 10 40 70 100 130 160 和 被减数 250 250 250 250 250 250 250 减数 10 40 70 100 130 160 190 差
学生通过填一填、比一比、说一说,知道了一个加数不变,(www.fwsir.com)另一个加数增加几,和也增加几;被减数不变 ,减数增加几,差反而减少几。对和、差变化规律直观的、初步的认识,为以后学习一个数加上(减去)另一 个接近整十、整百数的简便算法创造了条件。
一种是把运算定律、性质安排在应用题复习中,让学生在重温应用题解答的过程中感知运算定律、性质。 如第七册第110页复习,用两种方法解答应用题:“三年级同学参加春季植树,把90人分成2队,每队分成3组, 每组有多少人?”这道题的两种解法结果相同,所以90÷2÷3=90÷(3×2),这个等式表示:“一个数连续用两 个数除,每次都能除尽的时候,可以先把两个除数相乘,再用它们的积去除被除数,结果不变。”教材对这条 除法性质的直观描述,成为教学390÷5÷6、420÷35的简便算法的基础。
还有一种是为运算定律的教学安排例题,在学生充分感知的基础上进行抽象概括,形成对运算定律的理性 认识。教材第八册中的加法、乘法简便运算教学都是这样安排的。
简便运算是在特殊条件下应用运算定律、性质的快速计算。
运算定律、性质本身是具有普遍意义的规律。如只要是三个数连乘都可以先把前两个数相乘,再与第三个 数相乘,也可以先把后面两个数相乘,再与第一个数相乘;只要是连减,都可以先把各个减数相加,再从被减 数中减去各个减数的和。但在应用运算定律、性质简便计算时,需要根据算式所具备的特殊条件灵活运用。
思维的灵活性是简便运算的灵魂。
简便运算在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。因此,培养学生 思维的灵活性就显得尤为重要。首先,要培养学生敏锐的观察力。在教学中加强有针对性的口算练习,如两位 数加( )等于100,100减两位数等于( ),25乘以2、4、6、8,125乘以2、4、6、8等,提高学生发现简算 条件的能力。第二,要使学生正向思维和逆向思维同步发展,能正向也能逆向应用运算定律。如39×25×4=39 ×100=3900是正向应用乘法结合律,25×24=25×4×6=600是逆向应用乘法结合律;102×43=4300+86=4386是正 向应用乘法分配律,9×37+9×63=9×100=900是逆向应用乘法分配律。在应用的同时让学生正向、逆向表述运 算定律、性质。如表述减法性质:“一个数连续减去几个数,可以从这个数里减去各个减数的和”,“一个数 减去几个数的和,可以从这个数里连续减去各个加数。”第三,要使学生收敛思维和发散思维同步发展。有些 简算虽然方法相同,但可以用不同的原理来解释,如637+102=637+100+2=737+2=739,可以看作是应用和的变化 规律,也可以看作应用加法结合律。有些题目可以运用不同的原理找到不同的简算方法,如350÷25,应用“一 个数除以两位数,可以改成连续除以两个一位数”,那么350÷25=350÷5÷5=70÷5=14;应用“被除数和除数 同时扩大相同倍数,商不变”,那么350÷25=1400÷100=14.在教学中不宜把简算方法教得过死,也不要把一 道题可能用的简算方法教得很全,要鼓励学生动脑筋,自己寻找简算方法。
【遵循规律灵活运算——整数混合运算和简便运算教学】相关文章:
运算定律与简便算法,四则混合运算08-16
运算定律与简便算法 四则混合运算08-16
整数、小数的运算定律和简便算法08-16
《整数四则混合运算》教学反思04-05
整数、小数四则混合运算08-16
混合运算08-16
《混合运算》08-16
《简便运算》教学反思01-24
简便运算的教学反思01-29
混合运算教学反思01-09