- 相关推荐
谈小学数学教学中培养学生解答应用题的能力
一 培养学生解答应用题能力的重要性
关于培养学生解答应用题能力,《九年义务教育全日制小学数学教学大纲(试用)》中没有明确提出,但是在教学目的中讲到了使学生“能够运用所学的知识解决简单的实际问题”,这实质上包含了培养学生解答应用题的能力,当然在小学还是初步的。可以说,培养学生解答应用题的能力是使学生能够运用所学数学知识解决简单的实际问题的基本内容和重要途径。因为应用题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用到不同的数学知识来解决。通过解答应用题,促使学生把所学的数学知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。另外数学作为一门工具学科,也应该把它用于解决实际问题作为教学的一个重点。这一点越来越多地被各国数学教育工作者所认识。例如,美国在80年代初就提出“解问题是80年代学校数学的重点;”在为90年代拟订的中小学数学课程标准中,再一次强调数学教育的目标之一是使学生成为“具有解数学问题能力的人”,“有效地应用数学方法解问题的人”。当然,培养学生解应用题能力的重要意义远不止于此,还可以发展学生的逻辑思维能力,培养学生良好的思维品质(如思维的灵活性、创造性)和道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民所必须具备的能力和品质。
长期以来,我国的小学数学,无论从教材或从教学来说,对应用题教学是重视的,但是也存在不少问题,主要是偏重内容的教学,轻视能力的培养,加之教材的选择和编排不尽合理,教学的方法不尽适当,以致花的力量很大,收的效果较小。因此,如何提高学生解应用题能力,又使学生负担较轻,是一个值得认真研究探讨的问题。
二 解答应用题教学的改革趋势
近年来,国内外一些数学教育工作者和有经验的教师对解答应用题的教学,特别是如何培养能力进行了一些改革的尝试,取得了一些有益的经验。主要有以下几个发展趋势。
(一)应用题的内容趋于扩大
首先是加强联系实际的问题。不仅限于课本中编好的现成应用题,而是从实际生活中收集材料和数据,进行一些计算。例如,美国在进行加减计算时,让学生分类收集一些数字材料,然后进行统计和计算。英国在教学时给学生一张火车时刻表,不仅让学生能看懂某次车始发和到达的时刻,而且进行各种计算。通过一些实际作业使学生知道数学的概念和思想就存在于人们的活动当中,并且能够运用数学知识解决生活中的实际问题。我国有些教师也很注意实际生活中的数学问题。例如,一位教师出了这样一个题目:“某车间用一块长90分米、宽60分米的铁皮剪成半径是10分米的圆形铁片,该怎样下料才能使铁皮的利用率最高?”结果多数学生列成下式:90×60÷(3.14×102)≈17个;部分学生通过画图(左下图)得到答案是12个;还有一部分学生通过操作(如右下图)
得到答案是13个。通过讨论,使学生认识到最后一种下料方法利用率高,而第一种计算方法是脱离了这块铁皮的实际的。通过这样的问题使学生初步体会到在解决实际问题时绝不能生搬硬套所学的计算知识,还要注意对实际问题进行具体分析。
其次,运用数学知识所解的问题不限于实际生活中遇到的,还包括一些有助于培养学生运用数学知识进行探究能力的问题。例如,在下面的○里填上合适的数,使每相邻两个○里的数的和等于它们中间□里的数。让学生不仅写出不同的答案,而且找出填写的规律,并回答出能不能使开头和末尾的○里的数相同。由于解题的范围较广,很多国家不用“应用题”这个名称,直接叫做“问题”,日本原来叫做“应用题”,现改称“文章题”,以体现其范围的扩展。
(二)应用题的难度趋于降低
这个问题在多数国家已经得到解决。如日、美、英等国,解问题的面较广,较联系实际,但是难度较小。如日本课本中的文章题大多是两步计算的。有少数国家,如俄罗斯,原来应用题的难度较大,步数较多,后来难度已有所降低或适当后移。特别是在把小学三年制改为四年制以后,随着算术内容教学时间的延长,相应地应用题的教学时间也拉长了,应用题的难度也进一步降低。香港地区编订的《数学科学习目标》中规定整数四则应用题,“每题运算次数不超过两次”,分数、小数限解简易应用题。许多国家或地区采取这些措施,使应用题教学更适合小学生的年龄特点,无疑会有利于减轻学生的学习负担,更好地激发学生对解应用题的兴趣和积极性。我国在解应用题方面一直存在着偏难偏多的问题,特别是升学考试为了便于择优录取,往往出现超过大纲、课本范围的题目,给教学带来很大的压力和负担。近年来实施义务教育以后,强调全面提高民族素质,应用题教学开始注意适当降低难度,是一个可喜的现象。
(三)重视培养学生掌握解题的一般策略
这是培养学生解应用题能力的重要条件之一。它与应用题的教学目的和作用是紧密联系着的。长期以来,无论在国内或国外,都或多或少地把在小学数学课中要教会学生解答某些类型的应用题作为教学的最终目的。从这一看法出发,把教给学生应用题类型,记结语或公式作为基础知识。结果形成学生套公式的习惯,没有真正培养起解题能力。近些年来,越来越多的数学教育工作者认识到,应用题教学的最终目的,应是通过一些有代表性的问题的解答,使学生掌握解问题的一般策略或方法,从而达到真正培养学生解决简单的实际问题的能力。例如,日本伊藤武说过,过去解应用题,安于形式地机械地进行,把应用题分成若干类型,每一个类型都有一种确定的解法,结果容易使学生对确定的一些问题会解,而没学过的应用题就不会解了。前苏联弗利德曼著《中小学数学教学心理学原理》中说:“形成和发展学生解任何数学题(包括实用题)的一般技能,这是数学教学的基本职能之一”。1988年第六届国际数学教育会议也强调教学生学会使用解题的一般策略。有的代表指出,传统的教学解问题的方法往往是由教师给出一个范例,让学生模仿;教师不仅没有给学生准备真实的问题情境,也没有教给学生一般的解题策略,这样既不能提高学生解问题的能力,也不能提高他们解问题的积极性。有代表提出解数学问题的一般策略有:联系、分析、分类、想象、选择、作计划、预测、推论、检验、评价等。美国新拟订的《中小学数学课程和评价标准》中,每个学段的第一条标准就是学习和应用解问题的策略,只是要求的水平不同,体现逐步提高。目前美国的小学数学课本大都编入解题的一般策略,作为正式的教学内容。例如,一本五年级课本中出现以下一些内容:用图解,检验,有多余条件或缺少条件的,编题,多步题的解题步骤,估算得数,用表解。
近年来,我国一些数学教研人员和教师也开始注意研究如何教给学生一般的解题思路和方法,特别重视分析题里的数量关系。有的实验教材中也加强理解题意,摘录应用题条件,补充应用题的条件,检验应用题的解答等的训练。这对于提高学生解答应用题能力有很大的帮助。
(四)加强方程解法使之与算术解法相辅相成
从60~70年代的数学教育现代化运动开始,许多国家的小学数学增加了简易方程和列方程解应用题。但是列方程解应用题教学的起始期以及深度、广度,差异很大。例如,前苏联教学方程解法从小学二年级就开始了,而且有两步的应用题要求用方程解。这就涉及算术解法与方程解法之间的关系问题。近年来逐渐趋于一致。一方面,较多的国家或地区,如日本、俄罗斯、香港等,小学教学列方程解应用题限两、三步计算的,另一方面是在用算术方法解应用题有了一定基础再逐步出现列方程解应用题,这样可以使两种解法起到相辅相成的作用。
在我国,自80年代初小学开始增加列方程解应用题,一直有不同的看法。十多年的实践表明,增加简易方程和列方程解应用题,的确有助于发展学生的抽象思维,减少解应用题的难度,培养学生灵活解题的能力,并有利于中小学数学的衔接。但是在实际教学时还存在着不同的处理方法。特别是涉及分数除法应用题的教学,很多教师把用方程解作为向算术解法的过渡,最后还是强调算术解法,忽视方程解法。这样仍不能达到降低难度减轻学生负担的目的。近年来有些改革实验,强调算术解法与方程解法并重,相辅相成,取得较好的效果。例如,据《小学数学教师》1989年第3期载上海虹口区教育学院等按上述方法试验情况,第一次测试,试验班与控制班差异不明显,第二年秋追踪到中学进行测试,结果试验班成绩明显优于控制班,只学算术解法的学生到了中学产生了负迁移。另据《小学数学教师》1992年第2期载无锡市教委教研室等使用课程教材研究所编的实验教材,也取得类似的结果。两个实验班采取加强算术解法与方程解法的联系,并且两者并重,而两个对照班仍教给解题模式。结果单元教学完了,测试实验班和对照班成绩没有显著差异,但是寒假后再测试差异明显,实验班和对照班的成绩分别为87.3分和78.7分。但是根据北京一所小学的实验,单元教学完了在测试3步题和灵活解应用题时,实验班和普通班的成绩就出现明显差异。
三 义务教育《小学数学教学大纲(试用)》对提高解应用题能力采取的措施
《九年义务教育小学数学教学大纲(试用)》为了适应义务教育的性质和需要,切实提高小学生解答应用题的能力,根据国内外应用题教学改革的趋势,结合我国的实际情况,采取以下一些具体的改革措施。
(一)降低应用题的难度
《大纲(试用)》明确规定:整数、小数应用题最多不超过三步;分数、百分数应用题以一、两步计算的为主,最多不超过三步(只限比较容易的)。删去了原大纲中的稍复杂的应用题以及综合性的不太繁难的应用题。由于全国各地的条件不平衡,作为义务教育,提出的统一要求不能太高,这样修改就使全国大多数学校大多数学生经过努力都能达到规定的要求,而且有利于学生的全面发展,为升入初中打下更好的基础。考虑到各地的条件不平衡,《大纲(试用)》中也注意有些弹性,规定四步应用题(比较容易的)作为选学内容,以便使少数条件较好的学校能充分发挥学生的积极性,更好地提高解题能力。
(二)加强联系实际
这比原大纲有明显加强。一方面增加了联系实际的内容,如百分数的应用中明确提出利息的计算,把求平均数问题与统计紧密结合起来等。另一方面在说明中强调“要引导学生了解数学知识的实际应用,从当地实际出发,进行调查,收集数据,在教师的帮助和指导下,编成数学问题,进行计算、解答,或作一些简单的统计,逐步培养学生这方面的兴趣、意识和解决实际问题的能力”。这对于培养学生具有自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的有用的工具,起着重要的作用。
(三)注意体现教给学生解题的一般策略
在《大纲(试用)》的说明中提出:“要引导学生分析数量关系,掌握解题思路。”这实际体现了培养学生掌握解题的一般策略。为了使之更加落实,在各年级的教学要求中还明确提出分阶段要求。例如,在五年制一年级要求学生知道题目中的条件和问题,二年级要求初步学会口述应用题的条件和问题,三年级把常见的数量关系作为知识点列入大纲,要求初步学会口述解题思路,进一步培养检查和验算的习惯,四年级要求掌握解应用题的一般步骤,五年级要求会有条理地说明解题思路。这样安排要求,有利于循序渐进地培养学生掌握解题的一般策略,逐步提高学生解应用题的能力。与此同时,《大纲(试用)》中还注意适当让学生掌握解题的特殊策略或方法。例如,说明和教学要求中都提到会按照题目的具体情况选用简便的解答方法。这样有利于培养学生思维的敏捷性和灵活性。
(四)适当加强方程解应用题及其与算术解法的联系
首先,在教学简易方程时增加了ax±bx=c这一类型,相应地扩展了用方程解应用题的范围。这不仅可以用来解答较多的整数、小数应用题,而且可以用来解答一些分数、百分数应用题(需用逆思考的)。这样还降低了所解的分数、百分数应用题的难度。例如,“饲养小组养白兔和黑兔共18只,
[1] [2] [3] 下一页
学生接受,而且符合代数列方程解应用题的一般思路,从而为初中的学习做更好的准备。其次,《大纲(试用)》中强调五年级进一步提高用算术方法和用方程解应用题的能力,体现了加强两者间的联系以及灵活合理地运用两
知道方程解法和算术解法是密切联系着的,不是各自孤立的。也只有这样教学才能提高学生用两种方法解应用题的能力,从而进步发展学生在解题中的思维的灵活性和创造性。
四 对培养学生解答应用题能力的几点教学建议
下面根据近年来国内外改革的经验以及个人参加实验工作中的体会,对培养学生解答应用题能力提几点教学建议。
(一)抓好简单应用题的教学
大家都知道,解简单应用题是解复合应用题的基础,无论整数应用题或分数应用题都是一样,它们有共同的教学规律。打好整数、分数简单应用题的基础就为解复合应用题做好了准备。
怎么叫做打好解答简单应用题的基础?个人体会主要是使学生初步理解和掌握四则运算的意义,会分析简单应用题里的数量关系,然后能根据题里的数量关系正确选择运算方法,并养成检验的良好习惯。下面做一些具体的分析。
1.初步理解和掌握四则运算的意义。这是学习解答一切应用题的重要基础。正像有的教师所讲的,虽然应用题的内容是千变万化的,但都是四则运算在实际中的应用。往往有些学生不理解四则运算的意义,解答简单应用题时乱猜算法,或者根据题里的某个词语选定运算方法,这样是不能真正培养起解答应用题的能力的。关于四则运算的意义,要根据儿童不同年龄的认知特点分成不同的层次来教学。低年级要通过操作直观使学生理解每种运算的含义。例如减法,只要通过摆物品和图画等使学生懂得是从一个数里去掉一部分求剩下的部分是多少;高年级再进一步抽象,使学生懂得减法是已知两数和与其中一个加数求另一个加数是多少。高年级教学分数除法也是从乘法的逆运算的角度来理解的,这样就便于在解应用题时实际应用。
2.使学生学会分析数量关系。这是解答应用题的一项基本功。即使是简单应用题也存在着一定的数量关系,绝不能因为应用题简单而忽视对数量关系的分析。分析清楚题里已知条件和问题之间存在着什么样的数量关系,才好确定解决问题的方法。有些简单应用题的数量关系是明显的,学生容易弄清的。例如,“有5只黑兔,又跑来3只白兔,一共有几只兔?”学生很容易弄清,把原有的5只和跑来的3只合并起来,就可以知道一共有几只兔。但是有些简单应用题,学生分析数量关系就困难一些。例如,“有5只黑兔,白兔比黑兔多3只,白兔有多少只?”有些学生往往不清楚题里的数量关系,简单地看到“多3只”就判断用加法,结果与遇到求白兔比黑兔多几只的题发生混淆。因此,教学时最好通过操作、直观使学生弄清题里的数量关系。如下图,引导学生根据题里的条件分析出:白兔的只数多,可以分成两部分,一部分是和黑兔同样多的5只,另一部分是比黑兔多的3只,要求白兔的只数就要把这两部分合并起来,从而要用加法计算。由于通过操作和直观,在学生的头脑中对所学的应用题的数量关系形成了表象,经过多次练习,就能初步形成概括性的规律性的认识。这样教学,学生对每种应用题的数量关系都有一定的分析思路,就不容易发生混淆,也就不需要再教什么计算公式。
还可以举一道分数应用题。例如,“果园里有梨树480棵,占
还有一个判断哪个量是单位1的问题。通过线段图,学生容易理解,梨树的
要把总棵数看作单位1。进一步再分析,题里没有告诉总棵数是多少,知道
用题的数量关系,并且可以防止学生根据一些关键词来机械地判断单位1和套用数量关系式。
3.紧密联系运算的意义来选择运算方法。在分析数量关系的基础上紧密联系运算的意义(或含义),把对运算的意义(或含义)的理解与应用直接联系起来,很容易确定运算方法。例如,当学生分析出要把两个数合并(结合应用题内容具体分析,如上面求白兔的只数的应用题),就联想到用加法;当分析出要从一个数里去掉一部分,就联想到用减法;当分析出要求几个几是多少,就联想到用乘法;当分析出要把一个数平均分成几份求一份是多少或者求一个数里有几个另一个数,就联想到用除法。对于分数应用题也是一样,当分析出要求一个数的几分之几是多少,联想到一个数乘以分数的意义,可以确定用乘法;反过来当分析出一个数(未知数)的几分之几等于多少(已知),要求未知的数(如上面求果树的总棵数的应用题),联想到可直接列方程解,或联想到分数除法的意义,可确定用除法。由于运算的意义(或含义)与分析应用题的数量关系建立起直接联系,学生在解答应用题的过程中一方面加深对运算意义(或含义)的理解,一方面学会应用运算的意义(或含义)来解题,从而提高学生自觉地应用所学的数学知识正确地解决实际问题的能力。
4.培养检验的良好习惯。解答简单应用题同进行四则计算一样,也要注意培养检验的习惯,这样一方面可以提高解题的正确率,另一方面可以为培养检验复合应用题的能力打下初步基础。检验应用题要比检验四则计算复杂一些,首先要重新读题,分析已知条件和所求的问题之间的关系是否正确,然后再看列式、计算、答案是否正确。较高年级还可以通过改编应用题并解答来进行检验。通过检验还可培养学生思维的深刻性,对解答结果的负责态度和自信心。
实践表明,很多城乡的教师按照上述原则和方法教学,收到良好的效果,学生容易接受,解题的正确率高,灵活应用知识的能力较强。但是也有一些教师采用另一种教学方法,即教给学生区分应用题类型,运用解题公式,结果给学生增加了学习难度,出现死记硬套的现象。目前对这个问题还有争论,下面谈谈个人的一点看法:
(1)从数学本身看,把简单应用题划分的类型以及概括的解题公式是否科学,还值得研究。简单应用题的内容范围很广,从科学的角度说,研究它的分类是完全可以的,实际上美、日等国也有些数学教育工作者对简单应用题进行分类。但是如何分类差异较大,目前国内流行的分类也不完全一致,因此这还是一个有待深入研究的问题。例如现代数学用笛卡尔积定义乘法,有些实际问题就不好区分被乘数和乘数。而这类问题就没有包括在目前流行的分类之中。把求一个数的几分之几是多少作为一个类型题也欠妥当,因为一个数乘以分数的意义就是求一个数的几分之几是多少,这样的应用题不过是分数乘法的意义的直接应用,根本没有什么分类型的问题。至于有些解题公式是否正确地全面地反映实际也值得研究。例如,所谓“标准量×分率=部分量”,容易使学生误解“部分量”都是小于“标准量”的,从而导致判断哪个量是“标准量”的错误。而且遇到这样的问题只要应用一个数乘以分数的意义就能解决,因此这种公式是多余的。
(2)从唯物辩证观点来看,应用题的数量关系是有内在联系的,分类型、套公式,往往把本来有联系的问题人为地割裂开来,不利于学生掌握。例如,有这样两道应用题:“食堂每天吃20千克面粉,3天吃多少千克面粉?”“食堂每天吃20千克面粉,吃的大米是面粉的3倍,每天吃大米多少千克?”如果分析两题的数量关系,都是求3个20千克是多少,因此要用乘法算。如果要把它们划分为两种不同类型的题,就割断了它们在数量关系上的内在联系,从而不利于学生以简驭繁地掌握应用题的分析和解答方法。
(3)从学生的认知特点来看,也值得研究。低年级学生的认知特点是以具体形象思维为主,教学解应用题同教学其它数学知识一样,也应结合操作、直观,使学生掌握应用题的分析和解答方法,而不宜教给抽象类型、公式,否则学生不理解,就容易死记硬套。在教学实践中常常看到,学生会解答一道应用题,却说不出是“部分数+部分数=总数”,还是“总数-部分数=部分数”。遇到两步应用题就更加困难。例如,“同学们做了30件玩具,自己留下6件,剩下的平均送给幼儿园的3个班,每班分得几件?”第一步是“总数-部分数=部分数”,有些好学生还能说出,而第二步就很难说出“求出的部分数变成了总数”。这些违反儿童认知规律的做法给学生增加了不必要的学习负担。
(4)从现代数学论的原则看,要教学生理解基本概念、基本原理,才能实现最大迁移;强调思维过程,要从以记忆为主的教学方法转到以思维为主的教学方法;注意发挥学生的主体作用,培养学生探究能力。而以教分类型、记公式为主的教学方法正好与上述的原则相违背,妨碍学生对数学基本概念、基本原理的理解和掌握,束缚学生的思维。
当然,提出简单应用题教学不宜分类型记公式的问题,并不意味着在任何情况下都不能教给学生公式。对某些内容在适当的时候教给学生必要的公式,如面积、体积计算公式等,还是可以的,但教学时也要注意使学生理解公式的来源,防止机械的记忆。
总之,简单应用题教学生分类型记公式,涉及培养什么人的问题以及如何提高民族素质的问题,从理论和实践上进行一些深入的探讨,是十分必要的。
关于抓好简单应用题教学还有其它一些问题,将在下面论述。
(二)加强应用题之间的联系
从实质上说,这是应用题的组织结构问题。应用题的组织是否合理,结构是否恰当,对于培养学生的解题能力具有十分重要的意义。过去的数学课本,由于对这个问题处理得不够好,给应用题教学造成一定的困难,直接妨碍学生解题能力的提高。经过近年来的实验研究,比较深刻地认识到,应用题的内容和解法虽然千变万化,但其内在联系十分紧密。只要根据应用题的内在联系,合理地组织教学,可以使学生较好地理解应用题的结构,较快地掌握应用题的分析和解答方法。
1.简单应用题的内在联系。即使简单应用题之间,也有着紧密的联系。下面以两组加减法简单应用题为例加以分析。
①有5只黑兔,8 ②黑兔和白兔一共有 ③黑兔和白兔一共有
只白兔,一共有 13只,有5只黑兔, 13只,有8只白兔,
多少只兔? 有多少只白兔? 有多少只黑兔?
④有5只黑兔,白兔 ⑤有5只黑兔,8 ⑥有8只白兔,黑兔
比黑兔多3只,有 只白兔,白兔比 比白兔少3只,有
多少只白兔? 黑兔多几只? 多少只黑兔?
从上面6道题中,很容易看出①②③为一组,①是原型题,②③是①的逆思考;④⑤⑥为一组,⑤是原型题,④⑥是⑤的逆思考。同时第一组题与第二组题也有联系。例如,①④的条件和问题虽不相同,但分析数量关系时却要把两个已知数合并,从而要用加法解答。①⑤的条件都相同,但问题不同,数量关系不同,解答方法也不同。编写教材和教学时,不宜把重点放在分类型上,而要逐步地揭示它们的内在联系和区别,使学生更好地掌握题里的数量关系和解答方法。
分数应用题之间、分数应用题与整数应用题之间也有其内在联系。例如,教学分数乘、除法应用题之后,可与整数应用题进行联系。
通过联系对比,可以看出①②③是一组整数应用题,①是原型题;④⑤⑥是一组分数应用题,⑤是原型题。分数应用题分别与整数应用题相对应,数量关系相反,但解答方法是一致的,因为分数乘法的意义扩展了。教学时如能引导学生发现和总结规律,就会加深对两组应用题的理解。
2.复合应用题与简单应用题之间的联系。一般地说,复合应用题都是由几个简单应用题组合而成的,或者说是在简单应用题的基础上扩展起来的。因此它们之间有着密切的联系。但从简单应用题扩展到复合应用题又是个质的飞跃。以两步应用题为例,它们同简单应用题比较,不仅是已知条件增多,而且数量关系也复杂了。一般地说,简单应用题的问题是和两个已知条件直接联系和相对应着的,从两个已知条件可以判断所求的问题就是题里的问题;反过来,问题所需要的条件就是题里所给的条件。而在两步应用题中,问题是和题里所有的已知条件联系着的,是对所有的条件提出来的。这样就形成了问题和所需要的直接条件之间的“分离”现象,也可以说一个直接条件被隐藏起来,而需要根据问题和已知条件的关系把这个所需的条件找出来。从解答的角度说就是要提出一个中间问题。而要解答这个中间问题还要正确地选择已知条件。因此这比解答简单应用题需要较为复杂的分析和综合,需要进行间接的推理(即从两个判断推出一个新的判断)。
例如,两步应用题,“小明画5张画,小华比小明多画3张,他们一共画多少张?”要求两人一共画多少张,必须先知道小明和小华各画多少张,而题里没有直接告诉小华画多少张,所以要先求小华画多少张。这样的分析、推理显然比简单应用题复杂。
至于三步或更多步数的应用题,已知条件就更多,数量关系更复杂,分析推理的步骤也就更多。但分析推理的方法与两步应用题的基本相同。下面着重谈教学两步应用题如何加强与简单应用题的联系。主要有以下两点:
(1)解答一些连续两问的应用题。为了给学习两步应用题做好准备,除了打好简单应用题的基础(包括提问题、填条件)外,适当出现一些连续两问的应用题很有好处。这种应用题在向两步应用题过渡方面起着桥梁的作用。在这样的应用题中,关键在第二问,有时缺少一个已知条件,需要到前面的简单应用题里去找,往往正好是前面一题的计算结果;有时第二问中一个已知条件也没有,都要到前面一题里去找。例如,“学校里有8棵杨树,柳树比杨树多3棵,有多少棵柳树?两种树一共有多少棵?”第二问所需的两个已知条件,一个是前面一题的一个已知条件,另一个是前面一题的计算结果。由于适当进行这样的练习,就为两步应用题的分析和解答做了一定准备。
(2)教学两步应用题时由简单应用题引入,然后把它扩展成两步应用题。例如,“①学校买来20张颜色纸,用去14张,还剩多少张?②学校买来12张红色纸和8张黄色纸,用去14张,还剩多少张?”通过比较,使学生看出两步应用题与简单应用题的联系和区别,从而初步体会到两步应用题的结构,明确解答两步应用题必须分两步计算,先提出一个问题,进行计算,再解答原题里的问题。这样学生不仅容易掌握,还有利于激发学生的思考,培养学生分析问题的能力。以后还要经常做一些对比练习。
3.复合应用题之间的联系。这一点更为重要。通过复合应用题间的联系对比,可以加深学生对新学的应用题的结构、分析推理方法等的理解,从而较快地掌握复合应用题的解答方法,产生迁移的效果。复合应用题间的联系是多种多样的,需要进行认真的分析,选取适当的联系的途径,才能收到良好的效果。下面举出加强联系的几个方面的例子。
(1)纵向联系的:有些应用题是由已学的步数较少的应用题扩展而成的。教学时由已学的应用题引入,通过联系比较,很容易看出新的应用题的条件或问题有哪些变化,如何在已学的基础上进一步分析推理,获得新的应用题的解答方法。例如,“①汽车从甲地开往乙地,3小时行135千米。照这样计算,一共行了5小时,甲乙两地相距多少千米?②汽车从甲地开往乙地,3小时行135千米,照这样计算,还要行2小时才能到达乙地,甲乙两地相距多少千米?”
(2)横向联系的:有些应用题基本数量
上一页 [1] [2] [3] 下一页
关系相同,只是已知条件有些变化,学生容易在已学的基础上类推出来,不需要作为新内容来讲,这样既调动学生思维的积极性,又可减少教学时间,收到举一反三的效果。例如,“①学校先买10瓶墨水,又买来8瓶。用去14瓶,还剩多少瓶?②学校买来3盒墨水,每盒6瓶。用去14瓶,还剩多少瓶?”
(3)联系对比的:有些应用题的条件问题相似,解法容易混淆,可以通过联系对比使学生区分它们的异同,从而提高解题的正确率。例如,“①
(三)重视教学解题的一般策略
这是培养学生解题能力的关键性问题。正如前边所讲的,会解答所学的应用题并不是最终的教学目的,而是通过所学的有代表性的应用题达到使学生掌握解题的一般策略。这在现今的信息社会尤为重要,要使学生成为能够处理信息的人,通过解答应用题培养学生解题的一般策略是一个重要途径。关于解题的一般策略,主要有以下几个方面:
1.条件和问题的收集。
为了解一道题首先要弄清楚题里给了哪些已知条件,要求解决什么问题。识别或收集条件和问题的过程也就是收集信息的过程,也是理解信息的过程。在低年级往往要求学生口述已知条件和问题,到高年级也可以教给学生用图(如线段图)或表解来表示已知条件和问题。学生清楚地表述和表示一道题的已知条件和问题是解题的重要前提。一般地说,题里的问题和所需的已知条件都已直接给出。但是为了更好地培养学生正确收集必要的信息的能力,在适当年级也可适当出现信息不完全的题目。例如有的题目可以缺少问题或一两个已知条件,让学生从实际中收集,加以补充;也可以适当出现一些有多余信息的题目,使学生能在较多的已知条件中,正确选择有用的和必需的来进行计算。实验表明,有能力的学生看到题很快指出不需要的数据,而能力较差的学生则需要教师的帮助,有的甚至在教师的帮助下也很难找到多余的数据。经常练习对于培养学生这方面的能力很有好处。
2.分析数量关系。
这是对所收集的信息进行加工的开始,也是解题的一个重要步骤。无论解简单应用题或复合应用题,都要认真分析题里的已知条件和已知条件之间,已知条件和问题之间的数量关系,才好确定解答的方法。分析数量关系一般有两种方法:一种是从条件入手,通称综合法;另一种是从问话入手,通称分析法。综合法比较容易掌握,但其缺点是学生往往看到前面相邻的两个已知条件就进行计算,而忽略后面的已知条件,未从整体考虑。提出的中间问题不一定是解这道题所需要的。从问话入手稍难一些,但能使学生从整体出发,根据所解的问题提出所需的条件,从而较正确地确定中间问题。实验表明,开始教学解两步应用题,宜于从条件入手,即使采取了这种分析的方法,也还会有部分中、差生难以提出中间问题,需要经过一段训练逐步掌握。但是逐步要转到训练学生从问话入手,这对提高学生解多步应用题的分析能力很有帮助。至于学生自己解题时用哪种方法分析,不必加以限制。考虑到进行分析需要一定的训练时间,课堂上解应用题时要给学生口头分析的机会,除了教师指定某个学生分析外,要让同桌的学生互相练习分析。不宜过早地让学生书面分析,这样费时间,会减少解答应用题的数量。学生有了口头分析的基础,可在课外安排少量的书面分析作业。此外,订正时也要重视让学生进行口头分析。
3.拟订解答计划。
这是对信息进行加工的继续。就解决一般的问题来说,它是必不可少的步骤。但在小学数学中,解答简单应用题时则没有必要,只在解答复合应用题时才有必要,而且有时边分析边拟订解答计划边解答,往往与上一步的分析数量关系或下一步的解答合并起来。从掌握解题的一般策略来说,还是单把它划为一个阶段为好。拟订解答计划是在理解题意、分析数量关系的基础上确定解答需要分成几步,每步要解答什么问题。这是分析、推理的直接成果。正确地拟订解答计划,表明学生对所解的题目有了整体上的理解,同时又对解决问题的具体步骤做出了合乎逻辑的规划。能否在解答之前正确地拟订解答计划也是考察学生能力的重要的标志之一。实验表明,好的学生一般能在解答之前订好解答计划,而较差的学生往往能正确解答,却不一定能正确地提出每一步所要解决问题。因此,教学时在这方面适当加以训练,对培养学生的逻辑思维有一定的好处。
4.解答。
这是对信息进行加工的最后阶段。如果说前面各阶段主要是思维的过程,那么这个阶段要产生思维的结果。当然这个阶段也是有思维过程的。例如解答每一步要选择哪两个已知数,进行哪种运算,如何使计算正确等,都要深思熟虑,这样才能达到最终的正确结果。教学的任务就是要引导学生既重视思维的过程,也重视思维的结果,达到正确解答应用题的目的。这里需要提出的是,往往学生把算法选对了,但把得数算错了;或者竖式里的得数算对了,最后抄错了数。因此这个阶段特别要注意培养细心认真的良好习惯。
5.检验与评价。
对应用题的解答的检验与评价实质上是对信息的检验与评价。这一步教学不仅对提高应用题解答的正确率有帮助,而且有助于培养学生良好的检验习惯,对信息的正确评价的能力。有经验的教师对这方面的教学比较重视,收到较好的效果。但是也常常遇到教师虽然重视了,但有少数学生仍没有养成良好的检验习惯,甚至有少数好的学生做得很快,但是检查不出错误。因此在培养检验习惯的同时,还要适当教以检验的方法。检验方法有多种,通常低年级只要教学生从审题到解答逐一检查。中、高年级有些题可以逐步教给学生用不同解法来检验。例如,原来应用题是用连减计算的,检验时可以把两个减数相加,再从被减数里减,去,看两次算得的结果是否相同。以后还可以适当教学生把求得的结果作为已知条件,把另一个已知的量作为未知的,然后倒推求出结果看是否与已知的相符。这只作为一种检验方法教给学生在解答中练习应用,不宜作为考试要求。通过检验要培养学生对自己的解答具有负责态度和自信心。检验之后还要能对自己的解答进行评价。为了培养学生评价能力,可以开展相互评价,或教师给学生一些案例让学生练习评价。有条件的话,还可以教给学生估算得数。
解题的一般策略除上述几方面外,还有预测、解释等。这里从略。总之,今后应用题教学要真正做到培养学生的解题能力,不是在加深应用题的难度上下功夫,而是要通过有代表性的又为学生容易接受的题目,着重培养学生解题的一般策略,使学生能够产生迁移,这样即使遇到一些未解过的题目,学生经过自己的分析、推理也能找出解答的方法。
(四)重视变式练习
练习在培养解答应用题能力中起着重要的作用。但是练习要合理地组织,才能收到良好的效果。其中特别是适当安排一些变式练习,对于克服简单的机械重复,提高解题效率,培养灵活的解题能力,具有十分重要的意义。实验表明,通过变式练习,很多学生能够排除应用题中非本质特征的干扰,正确地分析题里的数量关系和选择运算方法,求得正确的答案。应用题的变式练习从低年级起就要做一些安排。主要有以下几个方面:
1.改变叙述的顺序。例如,乘法应用题,第一个已知条件不仅有需做被乘数的,还要有需做乘数的。复合应用题,有些相邻的两个已知条件可以进行计算的,也要有些不可以进行计算的,使学生能在真正理解题里的数量关系的基础上正确地选配已知数进行计算。
2.改变叙述的方式。例如,加法应用题,不宜每题的问题都出现“一共”,已知条件中也可以出“飞走”“跑掉”等词语,以防学生简单地根据个别词语错误地判断运算方法。在高年级教学分数应用题更要注意适当变化叙述方
这样可以防止学生死记“相当于”后面就是“单位1”,而加强分析数量关系。
3.有多余的条件。在解题的一般策略中已经谈过。也可以把它看作是一种变式练习。由于有多余的条件,对原来所解的正常的题目来说,在内容和形式上都有了一些非本质的变化,这就促使学生更认真地分析数量关系,正确地选择已知数和运算方法,而不受这些非本质特点的干扰,从而有利于发展学生的思维。例如,教学两步应用题后出现这样的应用题:“同学们做了8朵红花,7朵黄花。送给幼儿园3个班,一共送了10朵,还剩多少朵?”实验表明,如果去掉“3个班”,绝大多数学生都能做对;加上“3个班”后,出现了各种各样的错误,其中按三步计算的达30%。
4.改变个别已知条件或问题,使其具有不同的或特殊的解法。例如,教学正比例之后出现这样的应用题,“果园里有梨树100棵,桃树与梨树的棵数比是4∶5,有桃树多少棵?”学生很容易用比例解答出来。如果把第二
棵数的比才能用比例解答。又例如,“玩具厂原计划每天生产玩具42件,8天完成。实际只用6天。实际每天比原计划多生产多少件?”学生一般都能列成算式:42×8÷6—42。如果把“6天”改为“7天”,虽然仍可照上面方法列式解答,但是还有特殊解法,有的学生会列成简便算式:42÷7。因此它有利于发展学生的直觉思维。
解答应用题的变式练习是多种多样的,这里只选常见的有代表性的几个方面举例说明。由此也能看出它们在提高学生灵活的解题能力,发展学生思维方面的作用。
(五)适当增加探究性的题目
如前所述,国外应用题教学改革的一个趋势是扩展应用题的范围,其中增加探究性的题目又是重点。我国应用题教学要进行改革,也应突破传统的应用题的范围,适当增加探究性的题目,以利于提高学生的解题能力,发展学生思维的创造性。初步考虑,可以注意以下几个方面:
1.适当出一些开放性的题目。
所谓开放性的题目就是题目的答案可以有多个。长期以来我们教学应用题的答案都是唯一的,这样把学生的思维束缚得很死,不利于培养学生的探究能力,如前面第二部分所举在○里填数的题目就是一个开放性的题目。第一个○里可以填不同的数,但是也有一定的范围限制。即最小是3,最大是13。又例如,周长是12厘米的长方形,长和宽都是整数,它的长、宽可能各是多少厘米?
2.适当出一些探索规律性的题目。
通过探索规律可以培养学生抽象概括的能力,发展思维的创造性。出题目时要注意具有多层次,以便于区分学生的不同思维水平。例如,下面的题有3个层次,第1小题是通过直观进行计算,第2小题离开直观进行计算,第3小题脱离具体计算概括公式。
(l)照下图的样子用小棒连着摆正方形。
□□ 摆2个用( )根
□□□ 摆3个用( )根
□□□□ 摆4个用( )根
(2)连着摆6个正方形,要用( )根小棒。写出算式。
(3)如果不数小棒,你能找出一般的计算公式吗?
实验表明,学生的答案呈现不同的思维水平。例如,有的学生第2小题就做错了,有的学生第2题虽然做对,但不会在此基础上概括出一般计算公式。
3.适当出一些非常规的题目。
上面举的一些例子有开放性、探索规律等特点,但是还与常规计算有较密切的联系。这里则指的是不一定用到常规计算的题目。例如,“有甲、乙、丙、丁4个学生赛跑,结果可能排出不同的名次。算一算一共可以排成多少种不同的名次。”这道题就不能利用常规计算而要借助图表找出正确答案。
以上探究性题目可都不作为教学要求,也不作为考试内容。
小学数学是随着社会、科学技术、生产和生活的发展需要不断变化的,其中的应用题教学必然也要随着发生变革。目前,无论从教材或教学来看,对应用题进行了一些改革,但是还很不够,需要进一步实验、探索,使其更加完善,以适应社会发展的需要,为培养人才打下更好基础做出贡献。
上一页 [1] [2] [3]
【谈小学数学教学中培养学生解答应用题的能力】相关文章:
谈小学数学教学中如何培养学生的猜想能力08-13
应用题教学中能力的培养08-05
应用题教学中能力的培养08-07
谈学生实验能力培养中08-17
小学数学教学中创造能力的培养08-17
在小学数学教学中培养学生的思维能力08-05
小学数学教学中培养学生的综合实践能力08-17
在应用题教学中培养学生思维能力的探索08-08
小学数学教学小论文:谈学生思维能力的培养08-24