现在位置:范文先生网>教学论文>数学论文>高等数学教学的几点思考

高等数学教学的几点思考

时间:2022-08-03 15:37:56 数学论文 我要投稿
  • 相关推荐

高等数学教学的几点思考

  高等数学教学的几点思考

高等数学教学的几点思考

  重庆理工大学数学与统计学院高等数学教研室 陈 忠 金世刚 田 坚

  【摘 要】在高等数学教学中,数学问题情境要根据具体的教学内容和学生的身心发展需要来设置,教师在以原有的知识为基础之上,以新知识为目标,充分利用数学问题情境活跃课堂气氛,激发学生的学习兴趣,调动学生的学习主动性和创造性,进而促进学生智力和非智力因素的发展。本文探讨了数学的美学意义,在教学中如何创设合适的数学问题情境,培养学生提出问的能力。

  【关键词】高等数学;问题情境;教学思考

  笔者从事数学教学工作已20余载,在教学过程中,深刻体会到学生和教学目标的差距。细思之下,总觉得应该把它们说出来,以达到能让学生更好掌握,让同行能间相互借鉴,对教学能有效促进的目的。

  一、数学的美学意义是教学中必不可少的优质内容

  数学之美古已有之。早在古希腊时代,毕达哥拉斯学派已经论及数学与美学的关系,毕达哥拉斯本人既是哲学家、数学家,又是音乐理论的始祖,他第一次提出“美是和谐与比例”的观点。我国当代着名数学家徐利治指出:“数学美的含义十分丰富,如数学概念的简单性、统性、结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性与普适性,还有数学中的奇异性等等都是数学美的具体内容”。在教学中,通过创设情境,将抽象的概念具体化、形象化,这样易于学生理解。

  让学生感受数学是思维的体操。数学思想是我们认识世界的基础和有效工具。例如,在讲数列极限与函数极限的分析定义是用“ε-N”、“ε-δ”语言给出的,定义中具有任意性与确定性,ε的任意性通过无限多个相对确定性来实现,ε的确定性决定了N 和ε的存在性。这种定义精细地刻划了极限过程中变量之间的动态关系,表达了极限概念的本质,并且为极限运算奠定了基础,学过微积分的人无不赞赏它的完美,评价它是最严密、最精炼、最优美的语言。这些,可以在课堂上很激情地讲出来,直接撞击学生的内心,坚定学生对数学的认识,摒弃对数学的误解。又比如,数学中许多理论与人们的直觉相背离,有时让人觉得不可思议,给人以无尽的遐想,有时又带给人一种“山穷水复疑无路,柳岸花明又一春”的绝妙境界,它印证了我国数学家徐利治所说的:“奇异是一种美,奇异到了极限更是一种绝佳的美”。例如,有无限个连续点(无理点)和无限个间断点(有理点)的黎曼函数f(x)=x(为既约真分数)0x=0,1及(0,1)内的无理数;在任一点都不连续狄利克雷函数f(x)=0,x∈Q,x=1,x∈Q;处处连续但处处不可微的魏尔斯特拉斯函数f(x)=bcos(απx)(其中α为奇数,0<b<1,ab>1+π),这些函数我们都无法准确地描绘出它的图像。但是黎曼函数、狄利克雷函数和魏尔斯特拉斯函数的美就恰似一幅幅神奇的抽象画,虽奇异古怪,却是数学家们依靠想象而产生的艺术精品。这些内容对于大一新生来说,无疑是很新鲜很有吸引力的,能起到激发强烈的求知欲的效果的。

  二、创设合适的数学问题情境,培养学生提出问题的能力

  在高等数学教学活动中,只有使学生意识到问题的存在,才能激发他们学习中思维的火花。学生的问题意识越强烈,他们的思维就越活跃、越深刻、越富有创造性。而能让学生提出问题,则需要一定的情景创设。比如,在讲授过程中,举例时可以卖点关子,甚至故意做错,将问题摆在学生面前,促使学生思考。这样,往往有事半功倍的效果。比如,讲中值定理中证明柯西中值定理时,故意用拉格朗日中值定理的结论作比来证明。然后,指出其错误,再进行证明,使学生既加深了对辅助函数引入的重要,又对定理本身有着深刻的理解和记忆。在高等数学的教学中,我们知道很多同学反映数学单调、枯燥、不好学。实际上,情境创设能吸引学生积极参与和主动学习,让他们从数学中找到无穷的乐趣。所以,教师只要能为学生创设一个良好的数学问题情境,激发起学生对数学问题探究的热情,调动起参与学习的兴趣,我们的教学也能更显轻松,学生也会变被动为主动。

  在高等数学教学过程中,教师要善于创设具有启发诱导性的数学问题情境,激发学生的学习兴趣和好奇心,使学生在教师所创设的数学问题情境中自主的学习,积极主动的探索数学知识的形成过程,进而把书本知识转化为自己的知识,真正做到寓学于乐。设悬念不失为一种有效办法。悬念作为一种学习心理机制,是由学生对所接触的对象感到疑惑不解,而又想急于解决它从而产生的一种积极心理状态。它对大脑皮质有强烈而持续的刺激作用,使你一时对问题既猜不透、想不通,又甩不开、放不下。因此,悬念的设置,能激发学生的学习动机和兴趣,使思维活跃,丰富想象,追溯记忆,有利于培养学生克服困难的毅力。教师在课堂教学中,善于捕捉时机,恰当利用问题,创设悬念,可以触动学生探索新知识的心理,提高课堂教学效率。例如,在学习变上限函数的定积分时,可以提出这样的问题让同学思考:①中自变量是什么?②对其导数如何求?对于前一个问题比较好回答,后一个题在讲授中,我们可以先回忆一元复合函数的求导。同学们自然得出了结论。从而,我们可以看出在课堂教学中设置学生已经了解的原理作为提问的情境,可以启发大多数学生进行积极思维,调动同学们学习的积极性。创设类比情境,数学概念在很大程度上可以说都是通过类比来引出的。所以,类比推理是非常重要的。即根据两个研究对象具有某些相同或相似的属性,推出当一个对象尚有另外一种属性时,另一个对象也可能具有这一属性或类似的思想方法,也就是从对某事物的认识推到对相类似事物的认识。高等数学中有许多概念具有相似的属性,对于这些概念的教学,教师可以先让学生研究已学过的概念的属性,然后创设类比发现的情境,引导学生去发现,尝试给新概念下定义。这时,教师可以举身边常见的例子加以讲解。比如,我们知道冬天气温常常零摄氏度以下,到了春天气温渐渐升到零摄氏度以上,那么气温由零摄氏度下升到零摄氏度上,中间肯定要经过一点零摄氏度,这个零摄氏度就是我们所说的零点。再辅以教材习题中第4题,结合实际问题,更显零点定理的功能强大。这样,学生的感受肯定是很深的。实际上,还可以在授课过程中通过变式达到目的。所谓变式情境就是利用变换命题,变换图形等方式激起学生学习的兴趣和欲望,以触动学生探索新知识的心理,提高课堂教学效率。如在讲授中值定理时,在学习完罗尔定理后,教师可以进一步指出罗尔定理的三个条件是比较苛刻的,它使罗尔定理的应用受到了限制,如果取消“区间端点函数值相等”这个条件,那么在曲线上是否依然存在一点,使得经过这点曲线的切线仍然平行与两个端点的连线。变化一下图形,可以很容易得到结论,那么这个结论就是拉格朗日中值定理。这样经过问题的变换一步步地引出要讲授的内容,学生就可以很容易地接受新知识。当然,创设教学情境的方法不是孤立的,而是相互交融的。教师应根据具体情况和条件,紧紧围绕住教学中心创设适合于学生思想实际内容健康有益的问题,而又富有感染力的教学情境。同时,要使学生在心灵与情境交融之中愉快地探索,深刻地理解,牢固地掌握所学的数学知识。当然,在高等数学教学中创设情境的方法还有很多,但无论设计什么样的情境,都应从学生的生活经验和已有的知识背景出发,以激发学生好奇心,引起学生学习兴趣为目标,要自然、合情合理。这样,才能使学生学习数学的兴趣和自信心大增,学生的数学思维能力和分析问题、解决问题的能力得到提高。

  总之,高等数学中包含的数学美的内容是非常丰富的,只要我们善于去观察,善于去总结,我们还会有所发现,有所创新。

  【参考文献】

  [1]马忠林。数学教育史[M].南宁:广西教育出版社。2001

  [2]张奠宙,李士琦。数学教育导论[M].北京:高等教育出版社。2003

  [3](美国)莫里斯。克莱茵着,张里京,张锦炎,江泽涵译。上海:科技教育出版社。2002

【高等数学教学的几点思考】相关文章:

对作文入门教学的几点思考08-16

对中学体育教学的几点思考08-25

初中地理教学的几点思考08-19

关于历史教学的几点思考08-19

对小学识字教学的几点思考08-17

当前英语教学的几点思考08-17

对当前英语教学的几点思考08-17

对中学数学教学的几点思考08-17

对中职语文教学的几点思考08-18

关于初中数学教学的几点思考08-19