现在位置:范文先生网>教学论文>教学计划>初三下册数学教学计划

初三下册数学教学计划

时间:2022-08-24 19:21:47 教学计划 我要投稿

关于初三下册数学教学计划3篇

  时光在流逝,从不停歇,我们的教学工作又将翻开新的一页,该好好计划一下接下来的教学工作了!那么教学计划要怎么写才能突出呢?以下是小编为大家整理的初三下册数学教学计划3篇,仅供参考,希望能够帮助到大家。

关于初三下册数学教学计划3篇

初三下册数学教学计划 篇1

  教学目标:

  1、知识目标:

  ①了解位似图形及其有关概念;

  ②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。

  2、能力目标:

  ①利用图形的位似解决一些简单的实际问题;

  ②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。

  3、情感目标:

  ①通过学习培养学生的合作意识;

  ②通过探究提高学生学习数学的兴趣。

  教学重点:

  探索并掌握位似图形的定义和性质;

  教学难点:

  运用定义和性质进行简单的位似图形的证明和计算。

  教学方法:

  从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。

  教学准备:

  刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、

  教学手段:

  小组合作、多媒体辅助教学

  教学设计说明:

  1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.

  2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.

  教学过程:

  一、创设情境 引入新知

  观察大屏幕有五个图形,每个图形中的四边形abcd和四边形a1b1c1d1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?

  (学生经过小组讨论交流的方式总结得出:)

  特点:(1)两个图形相似:

  (2)每组对应点所在的直线交于一点。

  二、合作交流 探究新知

  请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议 观察上图中的五个图形,回答下列问题: (1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2) 在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)

  位似图形对应点到位似中心的距离之比等于相似比。由此得出:

  位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用 深化理解

  (同学们观察大屏幕出示的问题)

  例1如图d,e分别是ab,ac上的`点。(1)如果de∥bc,那么△ade和△abc位似图形吗?为什么?(2)如果△ade和△abc是位似图形,那么de∥bc吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?

  根据是位似图形的定义。

  需要两个条件:

  !、△ade和△abc相似;

  2、对应点所在的直线交于一点。

  问题2:已知△ade和△abc是位似图形,我们根据什么又能得出什么结论?

  根据位似图形的性质得出:

  1、对应点和位似中心在同一条直线上;

  2、它们到位似中心的距离之比等于相似比。

  (一生口述师板书:)

  解:(1)△ade和△abc是位似图形.理由是:

  ∵de∥bc

  ∴∠aed=∠b, ∠aed=∠c.

  ∵△ade∽△abc.

  又∵点a是△ade和△abc的公共点,点d和点b是对应点,点e和点c是对应点,直线bd与ce交于点a,

  ∴△ade和△abc是位似图形。

  (2)de∥bc.理由是:

  ∵△ade和△abc是位似图形

  ∴△ade∽△abc.

  ∴∠ade=∠b,

  ∴de∥bc.

  四、继续观察 拓展提高

  (同学们继续观察屏幕展示的图形)在图(1)——(5)中,位似图形的对应线段ab与a1b1是否平行?bc与b1c1,cd与c1d1,ad与a1d1是否平行?为什么?

  同桌观察探究并发言:对应边平行或在同一条直线上。

  (出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)

  五、反馈练习 落实新知

  挑战自我:

  1、下面每组图形中都有两个图形.

  (1)哪一组中的每两个图形是位似图形?

  (2)作出位似图形的位似中心

  2、如图ab,cd相交于点e,ac∥db. △ace与△bde是位似图形吗?为什么?

  (此环节由学生独立完成,第二题让一名学生到黑板上板书,以备面对全体矫正)

  六、归纳小结 反思提高

  请同学们谈一谈本节课的有什么收获和感想?

  本节课我们学习了位似图形,知道了什么叫位似图形,位似图形有什么性质?我们可以利用定义来证明位似图形,已知位似图形我们可以根据性质得到有关结论。观察并判断位似图形的方法是,一要看是否相似,二要看对应边是否平行或在同一条直线上。

  七、自我评价 检测新知

  1、如果两个位似图形的每组________所在的直线都_________,那么这样的两个图形叫做位似图形,这个点叫做________,这时的相似比又叫做________。

  2、位似图形的对应点到位似中心的距离之比等于_____________;位似图形的对应角__________,对应线段__________(填:“相等”、“平行”、“相交”

  、“在一条直线上”等)

  3、位似图形的位似中心,有的在对应点连线上,有的在___________的延长线上。

  4、如果两个位似图形成中心对称,那么这两个图形__________(填“一定”、“不”或“可能”等)

  5、下列每组图形是由两个相似图形组成的,其中_____________中的两个图形是位似图形。

  (由学生独立完成,教师巡视。最后公布答案,教师并将发现的问题及时矫正有利于学生知识的巩固和提高)

  八、课后延伸 探索创新

  在如图所示的图案中,最外圈的8个三角形组成的图形和次外圈的8个红色三角形组成的图形是位似图形吗?如果是,为似比是多少?

初三下册数学教学计划 篇2

  一、指导思想

  深入贯彻《初中数学新课程标准》,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式,义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。

  它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。 以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,力求中考取得好成绩。

  二、学情分析

  九年级(1、2)班共77人,其中男生41人,女生36人。上期两个班成绩一般,两极分化严重。经过一期的努力,很多学生在学习习惯方面有较大改进,学习积极性有所提高。也有少数学生自制能力较差,特别是到了最后一期,对自己要求不严,甚至自暴自弃。这些都需要针对不同情况采取相应措施,耐心教育。

  三、教材分析

  本册教材共分四章,分别是:解直角三角形、简单事件的概率、圆、投影与三视图。这些内容都是初中代数、几何及概率统计中的重要内容,起作承上启下的作用,它既是对已学过的知识的巩固和加深,又是为今后学习奠定基础。

  本学期的.新内容只剩两章:圆和投影与三视图。圆的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图;投影与三视图的主要内容是平行投影和中心投影,三视图。涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念与定理。

  根据三视图描述基本几何体或实物原型,是教学难点。

  四、 教学目标

  1、情感态度与价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观,使学生的情感得到发展。

  2、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图。掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。掌握初中数学教材、数学学科“基本要求”的知识点。

  3、过程与方法:经历探索过程,让学生进一步体会数学来源与实践又反过来作用于实践。通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“四大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。

  4、预期目标:合格率100% 优秀率30% 平均分105分。

初三下册数学教学计划 篇3

  一、教学目标

  1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.

  2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.

  二、重点、难点

  1.重点:位似图形的有关概念、性质与作图.

  2.难点:利用位似将一个图形放大或缩小.

  3.难点的突破方法

  (1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.

  (2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.

  (3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).

  (4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的'对应线段平行.

  (5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形(如例2中的图2与图3).

【初三下册数学教学计划】相关文章:

初三数学下册教学计划02-23

初三数学下册教学计划9篇02-23

初三数学下册教学计划(9篇)02-23

初三下册数学教学计划04-21

初三下册数学教学计划02-06

数学下册教学计划04-25

数学下册教学计划11-24

初三下册数学教学计划4篇05-27

精选初三下册数学教学计划三篇06-06

初三语文下册教学计划09-08