初二数学教学计划范文集合六篇
人生天地之间,若白驹过隙,忽然而已,又迎来了一个全新的起点,写好计划才不会让我们努力的时候迷失方向哦。什么样的计划才是有效的呢?以下是小编为大家收集的初二数学教学计划6篇,仅供参考,希望能够帮助到大家。
初二数学教学计划 篇1
教学目标:
(一)教学知识点
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质.
4.区分立方根与平方根的不同.
(二)能力训练要求
1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.
2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.
(三)情感与价值观要求
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.
教学重点:
立方根的概念.
教学难点:
1.正确理解立方根的概念.
2.会求一个数的立方根.
3.区分立方根与平方根的不同之处.
教学方法:
类比学习法.
教学过程:
Ⅰ.新课导入
上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=± .
若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?
Ⅱ.新课讲解
1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?
.若x的平方等于a,则x叫a的平方根,记作x=± ,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=± ,读作x等于正、负三次根号a,简称x等于正、负根号a.
[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.
[生甲]我认为这位同学回答得不对.如果x2=a,则x=± ,x3=a时,x=± 也成立的话,那如何区分平方根与立方根呢?
[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.
[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x= ,读作x等于三次根号a.
开立方的定义
[师]大家先回忆开平方的定义,再类推开立方的定义.
[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.
(2)立方根的性质
[师]2的立方等于多少?是否有其他的数,它的立方也是8?
[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.
[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?
[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.
[师]0的立方等于多少?0有几个立方根?
[生]0的`立方等于0,0有1个立方根是0.
[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?
[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.
[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.
(3)平方根与立方根的区别与联系.
[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.
[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.
[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.
初二数学教学计划 篇2
一、指导思想
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
本期我继续授八(二)班数学,本班学生数学成绩两极分化比较严重,不少同学基础很差,问题较严重。在上学期镇组织的期末统考中,本班数学只是位列中上游,要在本期获得理想成绩,师生需加倍努力,补缺补差,注重方法,夯实基础。
三、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十六章二次根式
本章是在数的开方的基础上展开的,是算术平方根概念的抽象与扩展。本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
第十七章勾股定理
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的.一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章平行四边形
本章的主要内容是认识平行四边形及几种特殊的四边形,通过对图形的操作或度量,让学生直观认识图形的性质,通过逆命题的猜想、操作验证和逻辑推理的证明等过程,让学生理解并掌握几种图形的判定方法,提高数学思维能力。
第十九章一次函数教研专区全新登场教学设计教学方法课题研究教育论文日常工作
本章的主要内容是函数的基本知识,以及一次函数的图象、性质和简单应用。函数是数学中重要的基本概念之一,它揭示了现实世界中数量相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。本章是学习函数的入门,也是进一步学习函数的基础。
第二十章数据的分析
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
四、教学目标和要求
注重基础知识的教学和基本能力的培养,面向全体学生,缩小两极分化,尽力使后进生能迎头赶上,大面积提高教学质量。
五、提高教学质量的主要措施:
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
4、培养学生良好的学习习惯。陶行知说:
教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。这些习惯包括①认真做作业的习惯,包括作业前清理好桌面,作业后认真检查;②预习的习惯;③认真看批改后的作业并及时更正的习惯;④认真做好课前准备的习惯;⑤在书上作精要笔记的习惯;⑥妥善保管书籍资料和学习用品的习惯;⑦认真阅读数学教材的习惯。
初二数学教学计划 篇3
一、教学目标
1、让学生学到的知识技能是社会对青少年所需求的;
2、要让学生知道这是自己终身学习和发展所需要的;
3、贴近生活实际让学生爱数学,自主的学教学;
4、让学生掌握数学基本知识和技能
二、教材分析:
该教材每章开始时,都设置了导图与导人语,激发了学生的学习兴趣与求知欲望。在教学中,适当设置如等以及等活动栏目,让我们给学生适当的思考空间,从而使学生能更好地自主学习。在教材各块内容间,又穿插安排了涉及数学史料、数学家、实际生活、数学趣题、知识背景、外语教学、信息技术、数学算法等等的阅读材料,用好它,不但扩大了学生知识面,而且增强了学生对数学文化价值的体验与数学的'应用意识。该教材练习题更是体现了满足不同层次学生发展的需要。
整个教材体现了如下特点:
1.现代性更新知识载体,渗透现代数学思想方法,引入信息技术。
2.实践性联系社会实际,贴近生活实际。
3.探究性创造条件,为学生提供自主活动、自主探索的机会,获取知识技能。
4.发展性面向全体学生,满足不同学生发展需要。
5.趣味性文字通俗,形式活泼,图文并茂,趣味直观。
三、教学措施:
注意从学生的生活经验和已有知识出发,创设生动有趣的教学情境
关注学生在学习活动中的情感和态度表现
给学生足够的活动空间,认真实施分层教学
妥善处理学生与教师的关系
加强学生之间的合作学习
注意教材弹性
注重从学生实际出发,注重概念引入多联系实际
尽量利用教具或多媒体设备
保持教材的逻辑体系
注重联系教材的文化背景
能进行简单的有理数的加、减、乘运算
注重联系实际,为将来学函数奠定基础
让课堂内容生动、趣味化,从学生熟悉的背景引出
体会
设计开放性很强的练习,关注学生情感、价值观的培养
关注与的教学思维的训练
四、课程的教学过程要求我们:
课堂教学从:,转变为:,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
五、学生评价
每章统一测试一次,重点课节,重点内容做到统一测试。
六.按教务处要求写好教案,完成组内听课。
七.二月份:
1、做好学期初的准备工作
2、教师上交教学计划,备课。
三月份:
1、开展集体备课、落实教务处工作计划。
2、规范课堂教学,深入课堂互相听课。
3、研究教材。
四月份:
1、做好期中考考试
3、搞好数学示范课、研讨课活动及评课。重点评价创造性、实效性、操作性。
4、初二年级课改研讨
五月份:
1、教学资料库建立、交流资料。
2、检查教案.学生作业。
3、教师交流教学经验,讨论下阶段教计划。
六月份:
1、 总结积累教学案例每人至少写一个教学后记,或整理一篇完整个案(含教案、实录、教学反思)或完成一个教学案例。
2做好期末复习、考试。
3、通过三三六”教学模式的实验研究,总结教材中的开放题,总结开放题的教学方法、教学经验与得失
初二数学教学计划 篇4
本学期我担任初二(4)(10)两个班的数学教学工作,从学生的成绩上看,两班学生的数学基础的差别很大,所以本学期的教学任务非常艰巨,但我仍有信心迎接这个新挑战。为了能更出色地完成教学任务,特制定计划如下:
一、本学期教材分析,学生现状分析
本学期教学内容是八年级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差,甚至加减乘除运算都不过关,更不用提解决实际问题了。所以一定要想方设法,鼓励他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。
(一)掌握学生心理特征,激发他们学习数学的积极性。
学生上初二,心理上发生了较大的变化,开始要求“独立自主”,因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的.地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。同时在言行上,教师要切忌伤害学生的自尊心。
(二)努力提高课堂45分钟效率
(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。
(2)重视学生能力的培养 生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中我着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。
(三)加强对学生学法指导 上初二,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。
二、教学研究计划
课堂教学与数学改革是相铺相成的,做好教学研究能更好地为课堂教学服务。本学期将积极参加学校和备课组的各项教研活动,撰写“教学随笔”和“教学反思”。本人决定上一堂公开课,与学校同组的老师共同探讨教学。
三、继续教育计划:
继续教育是提高教师基本技能的重要途径。本学期我积极参与校内外组织的各项继续教育,努力提升教育教学水平。
1、通过网络继续教育培训,学习新教育理念,不断完善教育教学方式。
2、阅读有关新课程的书籍,做好读书笔记;
3.继续学习汉语,提高自己的汉语水平;
总之,本学期的教学工作任务还有很多,需要在今后的实际工作中进一步补充和完善。
初二数学教学计划 篇5
一、教材的地位和作用
从《数学课程标准》看,关于数的内容,初中学段主要学习有理数和实数,它们是“数与代数”领域的重要内容。对于有理数和实数,初中学段共有安排三个章节的内容,分别是七年级上册第一章《有理数》,八年级上册第十三章《实数》和九年级上册第二十一章《二次根式》。本章可以看成其后的代数内容的起始章,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,它不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。
二、教学内容分析
(一)本章知识结构框图
1.本章知识的内在结构如下图所示:
2.本章知识的展开顺序如下图所示:
(二)教科书内容分析
本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。
教科书的第一节是平方根,本节先研究算术平方根,再研究平方根。教科书首先创设一个问题情景,抽象出这个情景中的数学问题,即已知正方形的面积求边长的问题,这是一个典型的求算术平方根的问题,这与学生以前熟悉的已知边长求面积是一个互逆的过程。通过对这类问题的探讨,引出算术平方根,给出算术平方根的概念和它的符号表示,这时教科书所涉及到的被开方数都是完全平方数。接着,教科书设置一个“探究”栏目,要求学生将两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长。这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是 这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数。另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数。 出现以后,一个很自然的问题,就是要讨论 的大小。教科书采用夹逼的方法,利用不足近似和过剩近似来估计 的大小,通过一步一步的估计,得到a的越来越精确的近似值,进而指出 是一个无限不循环小数的事实,同时指出 等也是无限不循环小数等,这就为后面认识无理数打下基础。会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法。用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子介绍了用有理数估计无理数的常用方法。至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容。接着,教科书设置一个“思考”栏目,对平方根展开讨论。在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于 1,16,36……的数,由此归纳给出平方根的概念,进而引出开平方运算。开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明。最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨了数的平方根的特征,并通过一个“归纳”栏目,要求学生自己归纳给出 “正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”等这些数的平方根的特征。
教科书第二节是立方根。对于立方根,教科书采用了与讨论平方根类似的方法进行讨论。首先设置一个问题情景,从这个问题情景中抽象出数学问题,就是已知立方体的体积求它边长的问题,这是一个典型的求数的立方根的问题。这样教科书就从这个典型问题引出立方根的概念和开立方运算。接着,教科书类比着平方运算与开平方运算的互逆关系,探讨了立方运算与开立方运算的互逆关系,并通过一个“探究”栏目,学习求数的立方根的方法。在这个“探究”栏目中,要求学生分别计算一些正数、负数和0的立方根,通过这些计算,一方面让学生学习利用立方运算与开立方运算的互逆关系求立方根的方法,另一方面也为下面探讨数的立方根的特征作准备。紧接着这个“探究”栏目,教科书设置了一个“归纳”栏目,由学生归纳给出“正数的立方根是正数,负数的立方根是负数,0的立方根是0”等这些数的立方根的特征。最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质。
学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数。本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,分析这些小数的共同特点,通过分析发现有理数都可以化成有限小数或无限循环小数的形式,然后指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来。在此基础上可以指出,像 等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念。教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义。接下去,教科书根据不同的标准对实数进行分类,揭示实数的内部结构。随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化。教科书通过几方面的例子说明了这种一致性和发展变化。首先,教科书通过探究在数轴上画出表示 的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的、平面上的点与有序实数对也是一一对应的;接着,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子说明,有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算、任何一个实数可以进行开立方运算)等。
与原教科书相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习),说明了平面内点与有序实数对一一对应以及在实数范围内的平移变换等;从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际出发,先讲算术平方根,再将平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开方运算,加强对估算的要求等。
三、教学目标和教学重点、难点分析
(一)、本章教学目标
1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;
3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化;
4.能用有理数估计一个无理数的大致范围。
2、单元教学的重难点:
教学重点:
1、平方根和算术平方根的概念。平方根是开方运算基础,是引入无理数的准备知识。平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,而且直接影响到二次根式的学习。。算术根的教学不但是本章教学的重点,也是今后数学学习的重点。在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。
2、立方根的概念与性质及求法。立方根是奇次方根典型类型,掌握立方根是理解的n次方根的基础。由于学习了平方根的概念的基础上学习立方根的概念,学生比较容易接受,但平方根和立方根的性质区别较大,性质掌握的好坏决定了求解立方根的能力,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上。
3、无理数和实数的概念。引入无理数使数域扩充到实数域,初中的所有数的运算均在实数范围内进行的。无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。要让学生掌握关于有理数的运算律和运算性质再实数范围内仍成立,这是中学数学的基础。
教学难点:
1、平方根与算术平方根的区别于联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难。
2、立方根的唯一性及负数立方根的意义。由于平方根的学习,学生容易错误的得出立方根与平方根的`结论相似,因此要对比讲解两者的区别:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。
3、无理数和实数的理解。无理数和实数比较抽象,尤其是无理数不能像实数那样具体描述出某个数的特点,在学生思维中想象不出它的存在,借助实数和数轴上的点一一对应,注意通过具体数加以解释。实数抽象程度较高,学生对实数意义有所了解就可以。
四、单元教学思路及策略:
(一)加强与实际的联系
本章内容与实际的联系是非常密切的。例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等。因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开,例如算术平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的,再如用有理数估计无理数的大小也是紧密结合实际进行的。编写时,将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算。
(二)加强知识间的纵向联系
本章内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,本章编写时,注意加强知识间的相互联系,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节“平方根”“立方根”在内容上基本是平行的,因此,编写 “立方根”这节时,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移。
(三)留给学生探索交流的空间
根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程。例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知正方形的面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知正方形的边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根有些感性认识的基础上归纳给出这个概念。再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、负数和0的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式。
三、几个值得关注的问题
(一)把握教学要求
本册书对于某些内容采用提前渗透、逐步提高的编写方式。例如,对于平面直角坐标系,在第6章“平面直角坐标系”中研究了平面内的点与有序数对的对应关系,其中点的坐标都是有理数,在本章将把点的坐标由有理数的情形扩展到实数范围,并建立平面内的点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础。
对于平移变换,教课书在第5章“相交线与平行线”中安排了一节“平移”,探讨得出“平移前后的两个图形的对应点的连线平行且相等”等平移变换的基本性质,又在第6章“平面直角坐标系”中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是有理数的情况。在本章,由于建立了点与有序实数对的一一对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索平面图形的几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础。
本章还通过一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的“二次根式”一章中还要继续研究。
另外,本章也提前渗透了一些数学思想和方法。比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点。这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究。
综上所述,本章教学时要注意把握教学要求,以一种发展的、动态的观点看待教学要求,不能要求一次到位。
(二)发挥计算器的作用,加强估算能力的培养
使用计算器进行复杂运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力。提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求。为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容。因此,教学中可以结合具体内容,综合利用各种途径培养学生的运算能力。
(三)重视人文教育
无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑。无理数的发现经历了一个漫长而艰苦的过程,在发现无理数的过程中,体现了人类为追求真理而不懈努力的精神。因此,教学时可以结合无理数的发现,挖掘数学知识的文化内涵,使学生感受丰富的数学文化,开阔他们的眼界,增长他们的见识。
另外,本章编写时注意加强与实际的联系,在选择素材时,力求选取学生感兴趣的和富有时代气息的实际问题。例如,本章选择了我国神舟5号载人飞船取得圆满成功的素材,通过这个素材可以使学生从数学的角度更多地了解航天知识,培养学生的民族自豪感和爱国主义情操,激励学生更加努力地学习,这样使学生在学习数学的同时,也得到了人文方面的教育。
初二数学教学计划 篇6
数学一定要提前预习:
就数学而言,即将成为二年级学生的学生将是关键的一年。
初中二年级的数学占整个初中知识点的一半。这是一个惊人的重量。中考几何的亮点:三角同余及其三次变换要在初二完成。这部分学习难度,可以问学校的师兄师姐。即使初一学习很好,对三角形同余的中高层问题还是感觉很麻木。此外,增加了平行四边形和梯形。
高二的代数主要分为公式和函数两部分。
一年级的学习主要集中在“数”的生成上,并不需要足够的学生整体思维。第二天,分式、根式、乘法公式、代数表达式乘除、因式分解都是公式之间的运算。这立刻把学生的思维要求提升到了一个更高的层次。学生需要一个适应过程来学习。对于学生,要么提前训练;或者在第二天的.学习中挤出这部分适应时间。
此外,这部分功能要求学生掌握数量变化的总体趋势。也是一种新的思维要求。
初中二年级数学之所以至关重要,不仅是因为数学任务变得越来越难,也是因为一门新的科学学科需要与数学争夺时间。那就是“物理”。
【初二数学教学计划】相关文章:
初二数学的教学计划07-01
数学初二教学计划02-08
初二教学计划数学02-19
初二数学教学计划06-25
初二数学上册教学计划07-28
数学初二教学计划15篇02-11
初二数学上册教学计划03-05
初二数学教学计划15篇11-05
初二数学教学计划(15篇)11-27
初二数学教学计划(精选15篇)03-26