现在位置:范文先生网>教学论文>教学计划>上册数学教学工作计划

上册数学教学工作计划

时间:2022-05-06 17:26:12 教学计划 我要投稿

关于上册数学教学工作计划四篇

  时间过得太快,让人猝不及防,我们又将续写新的诗篇,展开新的旅程,该好好计划一下接下来的工作了!那么你真正懂得怎么制定计划吗?下面是小编为大家收集的上册数学教学工作计划4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于上册数学教学工作计划四篇

上册数学教学工作计划 篇1

  一、教材简析:

  这一册教材包括下面一些内容:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。

  分数乘法和除法,圆,百分数等是本册教材的重点教学内容。

  在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。

  在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。

  在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。

  二、基本情况分析

  今年我担任六(1),六(2)两个班的数学教学任务,从上学期期末检测成绩看,两班学生优秀生少,学困生多。根据学生的实际情况,本学年在重点抓好基础知识教学的同时,加强后进生的辅导和优等生的指导工作,全面提高合格率和优秀率。

  三、教学目标

  本册教材的教学目标是,使学生:

  1、理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

  2、理解倒数的意义,掌握求倒数的方法。

  3、理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

  4、掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的'周长和面积。

  5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

  6、能在方格纸上用数对表示位置,初步体会坐标的思想。

  7、理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

  8、认识扇形统计图,能根据需要选择合适的统计图表示数据。

  9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12、养成认真作业、书写整洁的良好习惯。

  四、教学重点:分数乘法和除法、圆、百分数。

  五、教学难点:分数乘法和除法、鸡兔同笼问题。

  六、教学措施:

  1、创设愉悦的教学情境,激发学生学习的兴趣。

  2、提倡学法的多样性,关注学生的个人体验。Xkb1。com

  3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。

  4、加强基础知识的教学,使学生切实掌握好这些基础知识。

  5、学生能预习教材,提出知识重点,自己是通过什么途径理解的,还有哪些疑问。能通过查阅资料找出解决问题的方法。

  6、教师作为课堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操作能力和发散思维能力。

  7、利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发,自己找出解决问题的方法,体验学习数学的快乐。

  8、培养学习数学的兴趣和自信心,使每位学生的能力有所提高。

  9、体现学生的主体作用,让学生爱学、会学,教学生掌握学习方法。

  10、教学与实践活动相结合因材施教,每一堂课教学内容的设计都根据教学目标和学生的基础上,创建教学的问题情境,属于符合学生认知规律的教学过程。

上册数学教学工作计划 篇2

  一、学情分析

  本班共有学生人,从总体上看,大多数学生学习态度比较端正,能积极投入到学习中,上课能专心听讲,认真思考问题,能按时完成作业。但是自觉学习习惯不是很好,依赖性太强,有的学生计算能力比较差,有的学生动手能力比较差,独立解决问题的能力也很差,存在很明显的两极分化,后进生的面还是大,针对这些情况,本学期在重点抓好基础知识辅导的同时,加强后进生的辅导和优等生的指导工作,全面提高及格率和优秀率。

  二、教材分析

  本册教材内容分为“圆柱和圆锥”、“比例”、“图形的运动”、“正比例和反比例”、“数学好玩”和“总复习”六部分。“总复习”包括4个单元。

  (一)圆柱和圆锥:包括“面的旋转”“圆柱的表面积”“圆柱的体积”“圆锥的体积”4个课题。

  (二)比例:包括“比例的认识”、“比例的应用”、“比例尺”、“图形的放大和缩小”4个课题。

  (三)图形的运动:包括“图形的旋转(一)”、“图形的旋转(二)”“图形的运动”“欣赏与设计”4个课题。

  (四)正比例和反比例:包括“变化的量”、“正比例”、“画一画”、“反比例”4个课题。

  (五)数学好玩:包括“绘制校园平面图”、“神奇的带子”、“可爱的小猫”3个课题。

  (六)总复习:包括“数与代数”、“空间与图形”、“统计与概率”、“解决问题的策略”。

  三、教学目标

  1、认识圆柱和圆锥,掌握它们的特征,会求圆柱的侧面积和表面积,掌握圆柱、圆锥的体积计算方法。

  2、理解、掌握比例、正反比例的意义,能正确判断两种量是否成正比例、反比例。学会使用数对确定点的位置,懂得将图形按一定比例进行放大和缩小。理解比例尺的意义,能正确计算平面图形的比例尺。

  3、学生在图形的`运动学习中,通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,能有条理地表达图形的平移或旋转的变换过程,发展空间观念;经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

  4、比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。

  5、牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体表面积和体积。

  6、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。

  7、牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答所学的应用题和生活中一些简单的实际问题,进一步培养学生的分析问题和解决问题的能力。

  四、教学重点、难点

  1、理解正比例和反比例的概念,会运用比例知识解决问题。能运用不同的知识解答问题,加强整数、分数运算和比例之间的联系。

  2、认识圆柱和圆锥,理解特征;学会计算圆柱的侧面积、表面积;了解体积的推导过程。

  3系统的整理和复习,使学生对所学的数学知识得到巩固和加深,计算能力和解答应用题的能力得到进一步的提高,更好达到小学数学教学的预定目标。

  五、教学措施

  1、加强计算训练,进一步培养合理、灵活地进行计算的能力;加强口算练习,学会解答比较简单的整数、分数、小数四则混合运算,逐步提高学生四则计算的能力。

  2、在教学中以学生为学习的主人,培养学生积极主动学习的能力,提高学生的分析、比较和综合能力;培养抽象、概括的能力和判断、推理能力,以及迁移类推的能力;培养思维的灵活性和敏捷性。

  3、加强数学与生活的联系,培养综合运用知识解决实际问题的能力。让学生掌握一些常见的数量

  关系和应用题的解答方法,逐步提高解答应用题的能力。

  4、重视学法指导提倡学法的多样性,关注学生的个人体验,使学生从“学会”向“会学”转变,达到“教是为不教”的目的。

  5、改变观念,增强学生实践机会,使学生获得正确的图形表象,正确计算一些几何形体的周长、面积和体积,进一步发展学生的空间观念。

  六、课时安排

  1、圆柱和圆锥7课时

  2、比例7课时

  3、图形的运动7课时

  4、正比例和反比例7课时

  数学好玩3课时

  整理与复习3课时

  总复习数与代数15课时

  总复习图形与几何9课时

  总复习统计与概率5课时

  总复习解决问题的策略15课时

上册数学教学工作计划 篇3

  一、内容和内容解析

  (一)内容

  直角三角形全等的判定:“斜边、直角边”.

  (二)内容解析

  本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.

  教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.

  基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.

  二、目标及目标解析

  (一)目标

  1.理解“斜边、直角边”能判定两个直角三角形全等.

  2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.

  (二)目标解析

  1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

  2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.

  三、教学问题诊断分析

  由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.

  直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.

  基于以上分析本节课的难点是:“斜边、直角边”判定方法的`理解.

  四、教学过程设计

  (一)引言

  前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.

  问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?

  两个直角三角形满足的条件

  全等依据

  方法1

  两条直角边分别相等

  “SAS”

  方法2

  一个锐角和一条直角边分别相等

  “ASA”或“AAS”

  方法3

  一个锐角和斜边分别相等

  “AAS”

  追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?

  师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.

  【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.

  (二)探索新知

  问题2:探究5

  任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?

  画法:

  (1)画∠MC′N=90°;

  (2)在射线C′M上截取B′C′=BC;

  (3)以点B′为圆心,AB为半径画弧,交C′N于点A′;

  (4)连接A′B′.

  追问:作图的结果反映了什么规律?

  你能用文字语言和符号语言概括吗?

  文字语言: 斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)

  五、小结反思

  教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:

  1.这节课我们学习了哪个判定直角三角形全等的方法?

  2.判定两个直角三角形全等总共有哪些方法?

  师生活动:教师引导,学生小结.

  【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.

  六、布置作业:

  教科书习题12.2第7、8题.

上册数学教学工作计划 篇4

  一、 创设情境,开展学习活动

  1、让学生画圆、描述、交流,得出圆的第一定义:

  定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.

  2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

  从旧知识中发现新问题

  观察:

  共性:这些点到O点的距离相等

  想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

  (1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

  (2) 到定点距离等于定长的点都在圆上.

  定义2:圆是到定点距离等于定长的点的集合.

  3、点和圆的位置关系

  问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

  如果圆的半径为r,点到圆心的.距离为d,则:

  点在圆上d=r;

  点在圆内d

  点在圆外d>r.

  “数”“形”

  二、 例题分析,变式练习

  练习: 已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

  例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

  已知(略)

  求证(略)

  分析:四边形ABCD是矩形

  A=OC,OB=OD;AC=BD

  OA=OC=OB=OD

  要证A、B、C、D 4个点在以O为圆心的圆上

  证明:∵ 四边形ABCD是矩形

  ∴ OA=OC,OB=OD;AC=BD

  ∴ OA=OC=OB=OD

  ∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上.

  符号“”的应用(要求学生了解)

  证明:四边形ABCD是矩形

  OA=OC=OB=OD

  A、B、C、D 4个点在以O为圆心,OA为半径的圆上.

  小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.

  问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)

  练习1 求证:菱形各边的中点在同一个圆上.

  (目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)

  练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.

  (1)和点A的距离等于2cm的点的集合;

  (2)和点B的距离等于2cm的点的集合;

  (3)和点A,B的距离都等于2cm的点的集合;

  (4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)

  三、 课堂小结

  问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:

  (1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;

  (2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;

  (3)注重对数学能力的培养

【上册数学教学工作计划】相关文章:

数学上册教学工作计划08-19

数学上册的教学工作计划08-20

上册数学教学工作计划03-17

上册数学教学工作计划02-21

数学上册教学工作计划03-30

上册数学教学反思04-18

数学上册教学反思04-18

小学数学上册教学工作计划02-28

数学上册教学计划11-04

数学上册教学计划04-25