- 相关推荐
《平行四边形的性质》教学反思
从实践中学习 在反思中进步
——《平行四边形的性质》教学反思
广州市天河中学 叶小莹
内容摘要:教学路上,不断地从实践中学习,反思个中成败得失,才能把课上得更好,努力得让自己迈向更新的领域。
关键词:教学反思 平行四边形的性质
每个教师在长期的教学活动中,都可能形成自己独特的教学风格,对同一节课,不同的教师也会有不同的教法。如果在教学活动中,能善于进行比较、研究,准确评价各种教学方法的长处和不足,从中找出最佳策略,改进自己的教学。2008学年第二学期我区初二中心组和学校举行同时进行了平行四边形性质的教学研讨课,由五位老师用不同的教学方法进行教学,笔者结合自己的特点上了一节课,从教学设计到教学实施对本节课有较深的认识,现将本人的设计与实施进行反思。
一、基于教学目标的设计与反思
崔允漷教授认为,“课堂教学的目标是学校教育目的范畴的一个具体概念,它在教学过程中起的作用是不言自明的:它既是教学的出发点,也是归宿,或者说,它是教学的灵魂,支配着教学的全过程,并规定教与学的方向。”
(一)目标分析与制定
本节课是人教版八年级数学下册第19章《四边形》19.1.1 “平行四边形的性质”的内容。平行四边形及其性质是本节的重点,又是全章的重点。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及多边形等几何知识的基础上学习的。学习它不仅是对这些已有知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。学生在小学就学习了平行四边形的定义,能对四边形,尤其是特殊的四边形进行识别,但对于概念的本质属性的理解并不深刻。在学习平行四边形性质时,让学生通过观察度量,得出对边相等、对角相等、邻角互补的猜想。然后通过证明“对边相等”,必须添加辅助线证明两个三角形全等,一方面引入了对角线,另一方面让学生感受把四边形转化为三角形的数学思想。因此本节课要注意突出平行四边形性质的探索过程,重视直观操作和逻辑推理的有机结合,使证明成为学生观察、实验、探究得出的结论的自然延续,把实验几何和论证几何有机结合。所以本节课的教学目标是以学生为主体,通过学生自己的观察、操作、讨论得到平行四边形的性质,并加以说明和验证,能根据平行四边形的性质解决简单的实际问题。
(二)体现目标的设计与分析
根据教学目标,本节课分成生活中的平行四边形、探索性质、归纳性质、例题学习、课堂练习、自我反馈共6个环节。这里介绍一下环节二“探索性质”。
环节二、探索性质
1、已知m∥n,请根据平行四边形的定义,请画一个平行四边形
前面,结合生活中的平行四边形的实例与学生已有的知识基础,培养学生的抽象思维,强化了学生对平行四边形定义的理解,让学生感受数学与生活的密切联系。这里,让学生运用定义,画平行四边形,为后面探索平行四边形的性质作准备。设计的初稿是让学生随意画一个平行四边形,但是考虑到让学生随意画,可能会花比较多的时间,所以先给一组平行线,让学生在这一基础上画平行四边形。
2、阅读课本第83页第2自然段,然后进行填空
这里让学生学会自学,从教材中找出基本知识。在教学时,笔者没有讲述“对边”、“对角”的定义,以填空题的形式让学生理解“对边”“对角”,淡化概念。
3、观察这个四边形,除了“两组对边分别平行”外,它的边、角之间有什么关系吗?度量一下,与你的猜想一致吗?
学生动手度量刚才画出的平行四边形的边的长度、角的度数,猜想边、角之间的关系。当学生度量后,得出猜想,笔者利用交互式电子白板的即时操作功能,演示平行四边形的边、角之间的关系,再结合几何画板,让学生观察不断在变化的平行四边形,通过观察测量数据得出性质。
4、归纳性质
5、利用前面学过的知识证明上述结论
已知: ABCD中,求证:AB=CD,BC=AD
思考:(1)如何证明“∠A=∠C,∠B=∠D”及“∠A+∠B=180°”
学生在七年级下册学习过命题、定理的相关知识,知道一个命题要经过推理证实是正确的,才能称之为定理。因此,要对刚才的猜想进行几何论证。引导学生观察命题的结论是证明线段相等,提示已学过“线段相等”的证明方法有哪些?(等角对等边、中点性质、线段垂直平分线定理、角平分线定理、全等三角形对应边相等),根据题设,确定证明方法,学生选定需要利用全等来证明线段相等。然后笔者设问:“证明全等条件够吗?”,学生回答“不够”,接着设问:“条件不够时,怎么办?” ,学生很自然回答“添加辅助线”,接着设问“怎样添加辅助线?”,因为要在平行四边形中构造两个三角形,所以学生想到连结AC或者BD,就可以得到两个三角形,并且辅助线AC或BD本身就可以是一组公共边,根据平行四边形的定义得到对边平行,平行可以得到内错角相等,这样,证明三角形全等的条件就凑齐了。
分析完思路后,学生自行完成证明过程。课堂上,笔者展示了书写正确的学生的学习卷,从而规范几何证明的书写格式。同时,指出平行四边形对边相等也是证明线段相等的一个工具。
对于性质2的证明是引导学生利用刚才证明的全等三角形,通过“全等三角形对角相等”或者平行四边形的定义+辅助线能证明“平行四边形对角相等”这一命题;然后根据平行四边形的定义和性质2可以推出“邻角互补”,证明过程课后补充。
在此,笔者提醒学生刚才添加辅助线,把未知的问题转化为已知的三角形的问题,这条辅助线叫做平行四边形的对角线,引出下面的活动。
6、引出对角线,探索性质3并证明。
学生明确了对角线的定义后,通过度量猜想两条对角线有什么关系,有些学生很自然猜想对角线相等,但是经过度量,发现两条对角线不总是相等的。于是有些学生就卡住了。这时,笔者借助交互式电子白板,展示两个全等的平行四边形,然后旋转其中一个,让学生观察两条对角线有什么关系。同时,旋转后,两个原本重合的平行四边形还会重合,让学生巩固前面两个性质,同时发现新性质。虽然学生还没学习图形的旋转和中心对称的知识,但是操作比较直观,学生容易理解。但此处教学时,要向学生讲清线段互相平分的意义和表示方法。
(三)基于教学目标的反思
课后,听课的老师提出,学生在小学学段不仅学习了平行四边形的定义,还对平行四边形进行了度量,知道平行四边形对边相等、对角相等,所以,这节课不需要花时间再去度量平行四边形的边和角。
查阅人教版《小学数学》四年级上册第4章《平行四边形和梯形》,发现在教材中引导学生了平行四边形的定义,同时在课后练习中让学生通过度量的方式认识了平行四边形对边相等、对角相等(如右图)。
所以在备课时,应注意抓住学生的已有知识基础进行备课,充分利用学生已有知识进行学习,因此,本节课,应该在平行四边形的性质探索方面,着重探索对角线互相平分、邻角互补这两个性质,并正确进行平行四边形性质的证明。
同一节课,113中的严老师让学生经历了“探索——发现”这样一个发展过程,加深了学生对新知识的理解。东圃的李老师根据学生特点对教学内容进行适当的处理,突出了学生的“探究性学习”特点,有利于中下学生的学习。汇景的张老师这节课的重点与难度的尺度把握得很好,例题与练习的设计层次分明。同校的周老师大胆放手让学生自主研讨,通过推理论证培养学生类比、转化的数学思想方法,注重引导学生进行逻辑论证,规范证明的书写格式。
二、课堂教学策略的选择与反思
教学策略是指在教学过程中,为完成特定的目标,依据教学的主客观条件,特别是学生的实际,对所选用的教学顺序、教学活动程序、教学组织形式、教学方法和教学媒体等的总体考虑。
(一)课堂教学策略的选择与实施
本节课采用的教学策略:
策略一:把平行四边形的性质几个进行了整合在一个课时学完。
策略二:注重直观操作和逻辑推理的有机结合,通过观察度量、逻辑推理等手段来探索平行四边形的性质。
课堂上,学生先在学案中画一个平行四边形,然后用画图工具进行度量它的边、角、对角线,猜想平行四边形的性质;教师利用多媒体课件拆分平行四边形边、角,进行度量,更直观的得出猜想。然后师生共同证明这个猜想,得出平行四边形的性质。
(二)课堂教学策略反思
汇景的张老师和东圃的李老师都是让学生度量学案中印好的平行四边形,这样的确节省了时间,但是学生会否质疑:是不是所有的平行四边形都具备这些性质呢?这样一来,学生自己画的平行四边形就有了随意性,学生之间画的平行四边形也不尽相同,而且,利用几何画板演示平行四边形的动态变化,学生观察边、角等测量数据在这一动态变化过程中存在的规律,体现了从特殊→一般的过程。
113中的严老师,通过让学生动手用两个全等的三角形拼出平行四边形,探索出平行四边形的性质,使学生经历了“探索——发现”这样一个发展过程,加深了学生对新知识的理解。
汇景的张老师从学生原有的知识结构出发,通过猜想、测量、证明等多种方法得到新知识,将新知识的发生过程展现在学生的面前,与此同时渗透了一些科学研究的方法及“转化”的数学思想。
但是以上这三位老师的教学内容只是性质1和性质2,还没涉及到对角线。笔者是对这三个性质进行了整合,让学生有比较地学习。
笔者只是把课本的例题、习题进行了整合,按照直接运用性质、间接运用性质、提升等分了三个题组,但是总体难度不大,对于层次较好的学生,的确有吃不饱的情况。相比之下,同校的周老师的设计就显得更有深度。正如,教研员刘老师说的:“证明是为了‘不量’!”周老师的课上,从证明命题“已知:如图四边形ABCD中, , 求证:(1) , ;(2) , ”然后到归纳性质,再到例题讲解,最后巩固练习,扎扎实实的在培养学生能力,开拓学生思维,锻炼学生素质上下苦功,朴实无华。
由于学生在小学学段已经学习了平行四边形的定义,并掌握平行四边形的对边、对角之间的关系,所以本节课应该在平行四边形的“对边相等”、“对角相等”这两个性质上由教师在教学平台中演示,或者让学生代表在教学平台中演示即可,不需全班都进行度量,这样可以省下时间完成其他环节。
性质的证明是本节课教学的重点,所以在课堂上,可以给充足的时间让学生证明,然后让学生代表来讲思路,再给出规范化的书写过程。教师利用巡视学生证明,找出一些典型存在的问题。
三、基于教育信息技术的反思
《数学课程标准》指出,现代信息技术的发展对数学教育的价值、目标、内容以及数与学的方式产生了重大的影响。教师应“大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的探索性的数学活动中去”。
(一)课前的课件制作
这节课是一堂几何学习的新课,笔者用交互式电子白板软件和几何画板来制作课件。交互式电子白板软件,制作和修改课件十分方便,而且有丰富的资源库;同时课堂上使用交互式电子白板这一平台进行教学,在操作方面比以往的教学平台有更明显的优势。几何画板,在于几何图形的动态化和“形”与“数”的同步化,能提供一个理想的让学生积极探索问题的“做数学”的环境。
(二)课堂上的多媒体应用
课堂上,学生对自己画的平行四边形进行度量,猜想平行四边形的性质,这些平行四边形,都是静态的。教师利用交互式电子白板的即时操作,验证平行四边形的性质,能使平行四边形“动”起来。拖动平行四边形的一组对边,让学生直观的认识到“平行四边形的对边相等”;复制∠C,旋转、拖动到∠A,让学生观察两个角是否重合,验证“平行四边形对角相等”;拖动复制的∠C,看∠C和∠B能否组成一个平角,验证“平行四边形邻角互补”;旋转平行四边形,让学生观察平行四边形的对角线,得出“平行四边形对角线互相平分”。另外,观察两个旋转前后都重合的平行四边形,还可以使学生巩固学习的性质。
利用几何画板,作一个动态变化的平行四边形,通过度量各边长度、各角度数、对角线的长度,让学对平行四边形的性质产生感性的认识,又一次让平行四边形“动”起来。
交互式电子白板和几何画板的有机结合,更好的为教学服务,不仅增加了学生学习的积极性,还增加了课堂的趣味性,让学生在轻松愉快的学习坏境中学习。
四、基于教学效果的反思
本节课执教的班级学生素质较高,然而,在课前的设计预设练习中考虑不足,所设计的练习显然不能满足这一层次学生的训练度,正如听课老师所说:练习难度还可以提高、练习量可以加大;为此,课后将设计的做以下修改:
环节二中删去了画平行四边形的部分,改为学生代表在教学平台中演示平行四边形的度量情况代替全班度量。
环节四删去例1,保留例2,增设一个难度较大的例题。
例2、已知,四边形ABCD是平行四边形,且
求证:
环节五原题组A改为学生归纳出性质后,马上出给学生完成的随堂小练笔;
原题组B改成题组A;原题组C改成“课后作业”;
增加题组B
如图, ABCD中,AB=8㎝,BC=6㎝,∠A=30°,点P从点A 出发沿AB以每秒1厘米
的速度向点B移动。
(1)当P点运动了几秒时,△PBC为等腰三角形;
(2)设△PBC的面积为y,请写出y关于点P的运动时间t的函数关系式,并写出t的取值范围;
(3)是否存在一点P,使S△PBC= S ABCD?
增加题组C
如图所示,在 ABCD中, ,垂足为E, ,
垂足为F, ,且 ,
求 ABCD的周长
这样一来,就能解决好学生吃不饱的问题了。教师以自己的实践过程为思考对象,在“回放过程”的基础上,对其中的成败得失及其原因进行思考,得到一定的能用以指导自己教学的理性认识,并形成更为合理的实践方案。只有不断地从实践中学习,不断地反思实践,才能取得不断的进步。
参考文献:
1、《新课程下再探数学听课与评课》,沈斌,《中国数学教育》(初中版)2008年第10期,ISSN 1673-8284
2、《信息技术环境下的初中数学变式教学策略研究》,黄志英、李世杰,《中国数学教育》(初中版)2008年第11期,ISSN 1673-8284
3、《浅析现代信息技术对初中数学教学的影响》,刘璇,《中国数学教育》(初中版)2008年第12期,ISSN 1673-8284
【《平行四边形的性质》教学反思】相关文章:
《小数的性质》教学反思01-15
《小数的性质》教学反思08-22
等式的性质教学反思08-24
《等式的性质》教学反思08-08
除法的性质教学反思01-02
等式的性质教学反思03-24
《等式的性质》教学反思04-03
菱形的性质教学反思04-22
小数的性质教学反思04-22