- 相关推荐
三角形面积教学反思优秀(通用11篇)
作为一位刚到岗的教师,我们需要很强的教学能力,我们可以把教学过程中的感悟记录在教学反思中,教学反思应该怎么写才好呢?下面是小编为大家收集的三角形面积教学反思优秀,仅供参考,欢迎大家阅读。
三角形面积教学反思优秀 篇1
1、利用远程教育资源,创设教学情景。
利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的.课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。
2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。
割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。
3、利用远程教育资源,提高学生应用新知识的能力。
练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。
总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。
三角形面积教学反思优秀 篇2
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的.关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形面积教学反思优秀 篇3
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的`推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形面积教学反思优秀 篇4
本节我想结合探索性问题的设计研究来谈谈这节课的教学设想及几点反思。
探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。
三角形面积计算》这节课的内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式。因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题
一、动手操作,用拼摆法理解三角形面积计算公式
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,既可培养学生的合作精神,又可活跃课堂气氛。
三、用割补和折叠的方法,培养学生的创造性思维。
学生已经经历了平行四边形面积公式的推导过程,学习三角形面积公式会以在平行四边形面积推导中获得的经验,迁移到学习三角形面积之中,在探讨把一个三角形转化成学过的图形时,有的学生用在平行四边形中学到的割补法把三角形转化成了长方形,有的转化成平行四边形,还有的用折叠的方法折出了两个长方形。学生的思维被激活了,每个学生都在积极的参与,认真的思考,学生学习的积极性空前高涨,我也充分的'感受到学生浓郁的探究热情。
我感觉:在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah÷2。从表面上看,学生动手操作了,实际上学生只是被老师牵着鼻子走。学生没有主动地思考,没有猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。这样提供材料思维含量低,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。这样的操作是肤浅的,没有起到促进学生建构知识的作用。
三角形面积教学反思优秀 篇5
本节课是在平行四边形的面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。我觉得本节课的教学比较好的方面有:
1.动手操作形象教学。
在教学中,让学生操作分别将三组完全一样的三角形拼成一个平行四边形,并比较每个三角形与平成的平行四边形各部分的联系,使学生体验和感知三角形面积公式的推导过程。同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。课堂上,学生表现出浓厚的兴趣,学习积极性很高,每个人都积极动手操作,这样极大地调动学生的思维,学生也真正投入到学习当中,成为学习的主人。
2.引导学生思考,培养探究精神。
在这节课教学过程中,学生们面对平行四边形面积公式与三角形面积公式有什么不同?三角形面积公式中的“除以2”是怎么来的?这些问题,采取小组讨论的方式,通过思考,互相讨论,认真探究,得到结论。在三角形的面积计算公式推导出来以后,要鼓励学生继续去探索,以培养学生科学的态度和探究的能力。为此,我顺势引导,深入质疑:用底×高÷2这个计算公式来计算三角形面积是否可靠呢?三角形有锐角三角形、直角三角形、钝角三角形,用底×高÷2这个公式是否适用于所有三角形面积的计算呢?从而将学生的思维活动推向一个新的高潮。学生通过自己动手操作,动脑思索,小组讨论分析,然后各自发表自己的见解,这样学到的不只是公式本身,而是科学的`态度和探究的能力。
3.让学生学会应用所学知识解决实际问题。
本节课充分让学生学会应用所学的知识去生活当中的实际问题,例如:求交通标志的面积和红领巾的面积。让学生体验数学知识在实际生活中的重要性。
在这节课的教学过程中,我也发现了自己平时教学方式上的不足。例如学生在回答问题时,我有时操之过急,没给足思考的时间,就自己说出来了,再如课堂教学时间的把握和分配不够合理,前松后紧,导致有些练习在课堂上来不及完成。今后在教学中要注意尽可能克服上述不足,争取在有限的时间里获得最好的教学效果。
三角形面积教学反思优秀 篇6
《三角形的面积》是人教版五年级上册第六单元《多边形面积》中的内容,本节内容的教学目标可以定位两个:
1.通过拼一拼,探索并掌握三角形的面积计算公式,会计算三角形的面积。
2.能用公式解决简单的实际问题。这两个目标也是本节课的重难点。
对于第三代导学案的使用,我们一直处于探索中,边使用变改动,但都是根据学情来确定的。这节的课教学设计我是在检查了学生的预习情况后稍作了调整后进行的。在检查了学生的预习情况后,对于温故知新中的做钝角三角形的高一题我看学生做对的有两三个人,就临时加了处理这道题的环节,平时只让学生对改更正,不作处理。然后回顾了新课先知中本节课的难点,探索拼成的平行四边形和原来三角形的关系,然后看怎样得出三角形的面积公式。接下来进行分层训练。最后总结,一节课下来,总结得失有如下几点:
本节课的成功之处:
1、由于预习较充分,学生都能用转化思想讲出三角形面积公式的探索过程,虽然语言不是那么简练,这说明学生确实经过了思考,交流。
2、这也是我没有预料到的,学生的自信,敢于质疑。在在分层训练中,李嘉瑶写出并讲述了分层训练(二)中第1小题的思考过程后,本人认为她讲的非常精彩,可是当她讲完后随即就有同学质疑,周万里说她写的`语言不够准确,应该是拼成的平行四边形,少写了拼成一次,宫浩真说应该用他的那种解法最好,于是我就对比了两种解法,让同学们评判,从中选出了最优解法。
本节课的不足之处:
1、教师本人的总结语言欠精炼。在学生探索出三角形面积公式后,表述拼成的平行四边形和原来三角形的关系时,应该总结出它们是等底等高,所以三角形的面积是底×高÷2,我总结的比较啰嗦。所以在教学中还要继续提炼语言的准确、精炼程度。
2、小组交流不太充分。在探索面积公式时学生进行了交流,在分层训练时,没有让学生在互讲思考过程。这一点在今后教学中还要特别注意,不能只重展示轻交流。
三角形面积教学反思优秀 篇7
“三角形的面积”是学生在学习了长方形面积、正方形的面积及平行四边形面积公式的基础上进行教学的。主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式。根据新课程新理念的要求教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
新课前让学生回忆平行四边形面积公式的推到过程,先沿着平行四边形的高剪开(剪),然后平移到另一侧(移),拼成一个长方形(拼);再回想三个问题:
1.拼成的长方形的面积与平行四边形的面积的关系?
2.拼成的长方形的长与平行四边形的底有什么关系?
3.拼成的长方形的宽与平行四边形高有什么关系?让学体会转化的方法,为下面探究为三角形面积的`做了方法上的铺垫。
学生已掌握了一定的学习方法,形成了一定的推理能力。而红领巾是同学们非常熟悉的事物,关于它的面积是多少,大家一定很想知道,我本着生活中产生数学,又作用于数学的理念。所以我以求一条红领巾的面积是多少来导入新课,这样会比较自然。然后让学生猜测怎样求三角形的面积?
生1:沿着三角形的高剪开,把两个三角形拼成一个平行四边形。对于这一错误想法我采用了直观演示的方法,让学生观察这种方法不可取。
生2:用两个三角形拼成一个正方形,用邻边相乘。对于这位学生的错误想法我让她演示。该生拿着自己的两个三角形进行演示,的确拼成了一个正方形。我问:“邻边相乘求的是三角形的面积吗?”该生恍然大悟马上更正说:“应该再除以2”。这时我出示了任意的两个三角形进行拼组,让生观察能否拼成正方形。通过观察验证这些方法都不可取。
生3:用两个完全相同的三角形可以拼成一个平行四边形。根据该生的回答下面让学生动手操作,分别将两个完全一样的锐角三角形、两个完全一样的直角三角形、两个完全一样的钝角三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。结合图形启发引导学生说出三角形的面积、底、高与拼成的平行四边形的面积、底、高之间的关系。采用指名说、同桌互说、齐说等方法加深学生对过程的理解。提醒学生在运用公式进行计算时要注意什么?问什么要除以2?让学生对三角形面积公式的理解得到进一步的升华。
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。如:求红领巾面积,求安全警示牌面积,每个环节都是在解决生活中的实际问题,使学生学习不但互动有趣,而且富有生活气息。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经做到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。
三角形面积教学反思优秀 篇8
前期备课时就在想:如何才能设定一个学生比较感兴趣的情境,教材中用到的是求形状为三角形的流动红旗,考虑到我们学校的流动红旗并不是三角形的,因此这个情境并不是很合适。昨晚下班路上无意中想到了红领巾,刚巧前两天还经历了建队日,当天老师们也都带了红领巾,而且比学生的还要大好多。因此今天上课笔者便用了尝试计算红领巾面积的问题,借此驱动学生的学习,实施过程发现学生的确是比较感兴趣。
关于三角形的面积公式大部分学生都已经知道了,他们能够很快地说出三角形面积=底×高÷2,但是这个公式是如何推导出来的学生并不是很清楚,因此笔者将三角形面积公式的推导作为了本节课的教学重点。
在每一次的新授课中笔者都习惯向学生渗透:当我们遇到一个新问题时,要学会把它转化为能用已有知识解决的问题,针对本节课的内容则是要让学生认识到三角形的面积我们不会求,但是上节课学习了平行四边形的面积以及以前学过长方形和正方形的面积等,于是可以想办法把三角形进行变形。
在教学过程中笔者准备不同形状、不同大小的三角形让学生动手实践,在这一设计上笔者没有进行任何预设,学生的作品让人惊艳,分别用了拼、折、剪拼等方法,然后一点一点带领学生进行推导,但考虑到课时紧张,主要以教师的讲授为主,仔细想想也是有些矛盾,如果能让学生自主推导是不是更能锻炼学生的逻辑推理能力,另外考虑本节课的教学目标中有“经历三角形面积猜想与验证的探究活动,体验割补等方法在探究总的应用”,那么对于学生在此方面的实施深度应是怎样的?要怎样把握,还需要在后续的教学过程中继续揣摩。
在本节课的`结尾通过同学们亲手测量红领巾的相关数据,并应用课上推导出的三角形面积公式测出了红领巾的面积。
在学具方面一直在犹豫准备什么形状的三角形,在教学过程中学生也有反馈可以用:等腰三角形、等边三角形、钝角三角形、锐角三角形、直角三角形等,但在之前三角形分类一课中,不同三角形是根据分类标准不同而定义的,因此可以按角的大小分类的即可,即准备锐角三角形、直角三角形、钝角三角形若干个,让不同组的学生用不同形状的三角形,在最后的方法展示中可以凸显出不同方法,不同形状三角形的验证本质是一样的。
三角形面积教学反思优秀 篇9
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:1。剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。2。拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。3。观察,拼成的平行四边形和三角形之间有怎样的关系?4。想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的`平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的同学拼成的平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
三角形面积教学反思优秀 篇10
三角形的面积是在学生学习了平行四边形面积的基础上进行教学的。这节课让学生在实际情境中,自主探索、经历推导三角形面积公式的过程。能用三角形的面积公式计算有关图形的面积,解决实际问题。
教学前,我先让学生预习教材25页内容,找出自己不懂的地方,初步理解三角形和平行四边形的关系。并自己剪出两个完全相同的三角形,为进一步学习做准备。
教学过程中,我安排学生先动手操作把两个完全一样的三角形拼一拼,看看能拼成什么图形?学生通过用图形拼,很容易就知道能拼成一个平行四边形,也有的学生用两个直角三角形拼成了长方形,换一种拼法,也就拼成了平行四边形。通过动手操作,学生了解了三角形能拼成长方形和平行四边形。
最关键的是让学生思考:拼成平行四边形的底和三角形的底、平行四边形的高和三角形的高的关系。在这个重要环节中,我组织学生看着拼好的.图形,先思考,然后说出自己的想法。学生热烈的交谈着,拿着三角形比划着、说着,最后得出结论:两个完全一样的三角形,能拼成一个平行四边形,这个平行四边形的底等于三角形的底,高等于三角形的高,三角形面积是拼成的平行四边形面积的一半。
看着学生动手操作、动脑思考、热烈交流,我知道学生是真的融入探索知识的过程中,他们的思维被打开,探索欲望被激活,学习兴趣也提高了。
除了两个完全一样的三角形拼成一个平行四边形,还可以怎样把三角形转化成平行四边形呢?
这次可难坏了许多学生,他们开始剪的时候,也发现拼不成平行四边形,最后费好大劲才发现:只要沿着中间一条线剪,就可以拼成平行四边形。
通过学生自主探索,利用转化和剪拼的方法探索出三角形面积的计算公式:
三角形面积 = 底 × 高 ÷ 2
用字母表示:S = a h ÷ 2
本节课,学生学会了利用转化法和割补法,把三角形转化成学过的平行四边形来推导出三角形面积的计算方法,培养了学生独自探索、合作交流和利用多种方法解决问题的能力。
三角形面积教学反思优秀 篇11
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深。
1、符合新课改理念,突出了学生的发展,合理设计教学流程
以前的教学只是注重学生的双基训练,不重视知识的生成过程,而这节课的所有设计都围绕学生的思维,学生的分析问题能力,整节课体现学生主动参与、乐于探究、勤于动手,培养了学生获取新知识的能力,分析问题和解决问题的'能力,以及交流与合作的能力,教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
2、努力培养学生的发散思维
开放的探究式学习要不受任何人的约束,要有教师层层深入的引导。这节课设计中,教师注重教材的开放性和思考性,不断鼓励学生去思考,去探索不同的办法,让学生有自主选择的权利和广阔的思维空间,让学生独立思考与小组合作相结合,在相互交流的过程中,自行总结出了三角形的面积公式,学生在操作活动中展现了自己,方法多样且独特,是以往教学所没有的,效果很好。创设引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。
3.构建和谐的新型师生关系
本节课老师赋予了学生很多思考、动手和交流的机会,教师扮演了组织者、引导者和合作者的角色,充分发挥学生的主体作用,较好的体现了教师是学生学习的引导者,引导学生围绕问题的核心进行深度探索、思想碰撞等。从根本上改变了传统的教学模式,使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。拓宽了学生在数学教学活动中的空间。
这个案例一定程度上反应了要改变传统的教学方法,要实施新课改,最根本的还是教师角色的转变,转变传统意义上的教师教,学生学,不断形成师生互教互学,彼此形成一个“学习共同体”。为了进一步激发学生的潜能,使他们的讨论和思考更有价值,我们每一位教师都应该不断学习,提高个人素质,以设计出更好的教学环节,让师生共同成长!
【三角形面积教学反思优秀】相关文章:
三角形面积教学反思08-25
《三角形的面积》教学反思03-15
三角形的面积教学反思11-04
数学《三角形的面积》教学反思04-20
三角形面积的计算教学反思04-14
《三角形的面积》数学教学反思04-12
《三角形面积计算》的教学反思03-25
《三角形的面积》教学反思15篇03-22
《三角形的面积》教学反思(精选23篇)10-25