解方程教学反思
身为一位到岗不久的教师,课堂教学是我们的工作之一,通过教学反思可以很好地改正讲课缺点,来参考自己需要的教学反思吧!下面是小编收集整理的解方程教学反思,希望对大家有所帮助。
解方程教学反思1
教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的关系混乱容易出错,而初中的.教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的关系讲解一遍。然后让学生根据自己实际情况灵活运用。
可是跟设想的不一样,利用等式的性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。
1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。
2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。
所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。
解方程教学反思2
本节课的内容是在学生学习了用字母表示数、等式的性质的基础上进行学习的。本册教材的解方程不仅安排了形如x+a=bx-a=bax=bx÷a=b这样的简单方程,还安排了形如a-x=ba÷x=b这样的特殊方程。
成功之处:
1、淡化依据逆运算关系解方程,与初中数学相衔接。根据《标准(20xx)》的'要求,从小学就引入等式的基本性质,并以此为基础导出解方程的方法,这样就避免了同一内容两种思路、两种算理解释的现象,有利于改善和加强中小学数学教学的衔接。从而摒弃了原来依据逆运算解方程的思路,能有效降低学生学习的难度,也降低了记忆的难度。实际上依据逆运算解方程就是用算术的思路求未知数,只适合解一些简单的方程,到了中学还要重新另起炉灶。因此,利用等式的性质解方程能够帮助学生深入的理解方程的意义,能深入理解方程所揭示的等量关系,也更有助于逐步感悟方程的实质、等价思想和建模思想。
2、重点教学特殊方程,体会用等式性质解方程的优势。在例3的教学中,先让学生自主尝试解方程20-x=9,大部分学生依据前面学习的内容写成了下面的过程:20-x=9
解:20-x+20=9+20
X=29
可是学生经过检验发现x=29并不是方程的解,从而引导学生讨论怎样把新知识转化为旧知识来解决问题。
不足之处:
1、在练习中由于课本这样的练习太少,没有增加相应的题目,学生熟练的程度还是比较欠缺。
2、学生对于归纳总结出来的特殊方程的解法还没有内化,导致学生出现解普通方程和特殊方程在解法上相混淆。
再教设计:
1、及时总结特殊方程的解法:当未知数是减数或除数时,方程两边要同时加上或乘未知数,再解方程。
2、要弄清什么是减数和除数,避免出现不必要的错误。
解方程教学反思3
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,还有老教材中提到的运用关系式各部分之间的关系来解决?面对困惑,向老教师请教,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的.原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。
通过这块知识的整理,我感觉到教材需要教师好好的研究,才能用最合适的方式去教导学生,数学经常存在一种一题多解情况,老师就是引导学生走最好最合适的路。
解方程教学反思4
《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在认识用字母表示数的基础上进行教学的,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。
我对课时安排及教学设计均做了较大调整。原订计划是第一课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第二课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第一课时完成“方程的解”及“解方程”概念教学、会解形如X±A=B的方程,掌握检验的格式;第二课时只完成乘除法方程的'解法。我上的是第一课时,其次对于教学设计也做了相应处理,将例1 改为:X+20=70,又将X-a=b形式的方程穿插学习过程之中。
为什么我会做如此改动呢?基于以下两点原因:
1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。2、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。总体思路如下:
1、从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。
2、通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。
3、给足够的时间让学生学习,让学生发现。
4、多层次的练习形式,有利于学生对知识进一步的理解与掌握,并及时有效地巩固强化概念。
5、教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。
6、自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
在具体教学过程中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
教学中我先利用课件演示了“我说你答”的游戏让学生回顾:天平两端同时加上或减去同样的重量,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例题X+20=70
二、利用 等式性质解方程-,初步感悟它的妙用
在计算过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,通过讨论:方程X+20=70中左右两边同时减去的为什么是20,而不是其它数呢?让学生明白:左边减去20是为了使方程左边只剩,右边减去20是为了使方程两边仍然相等!不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
三、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。
通过教学,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一点困惑:
从教材的编排上,整体难度下降,有意避开了,形如:A—X=B 和 A÷X=B等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。这会不会与教材主倡导的用等式的性质解决问题有矛盾呢?
解方程教学反思5
这次教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的'学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。
尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。
在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。
解方程教学反思6
本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的`问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的旧知识来解决,那你认为应该把这样的减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?
通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。
解方程教学反思7
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的组织者、引导者与合作者”的这一角度上,()为学生创设学着此课的`情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
解方程教学反思8
方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。
五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:
旧教材:
x+48=127
x=127-48
依据运算之间的关系:一个加数等于和减另一个加数。
新教材:
x+48=127
x+48-48=127-48
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
在实际教学中发现,同旧教材的方法相比,现行教材中的'这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。
可是,当学到用方程解决实际问题时,却出现了状况。
新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。
如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。
我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。
如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”
合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。
如此一来,学生怎么能充分体会方程顺向思维的优越性?
如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?
我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。
解方程教学反思9
本节课中学生学习等式的性质是没有多大的难度的,在运用等式的性质进行解方程时,难度也不是很大。课本安排了不少解方程的题目,学生都能一一解决。仔细观察课本,其实会发现课本上在慢慢增加根据具体情境列出方程并解方程的题目。这是本单元的难点,这就需要让学生根据题目中的等量关系来写出方程。将等量关系写出方程和学生之前根据等量关系解答是不同的。
学生不太习惯,导致列的方程奇形怪状。这里有必要深入探究方程的含义。根据上节课的学习学生知道:方程是从等式演变而来。含有字母的等式才叫作方程。换言之,方程其实是一种含有未知量的.等量关系的一种表达式。我们只需要将等量关系找到再将其表达成方程即可。学生出现问题的原因是以往大部分的解题经验所写出的等量关系是从结果出发来写的,一切为结果服务这样一种逆向的思维过程。而现在写出题目中的等量关系却是从条件出发的一种正向思维。
虽然在三年级时,我们学习了从条件出发和问题出发两种不同的解题策略,但这离帮助学生形成这两种思维还是远远不够的。通过这样的分析,那我们在引导孩子列方程时,就要从条件出发,找等量关系来列方程了。先要帮助学生找出等量关系,在引导孩子根据等量关系表达出相应的方程。这一点的学习时必须的。
解方程教学反思10
本节课的学生学习的重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;学习目标是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的`事物入手,降低问题的难度。
解稍复杂的方程这部分内容烦琐乏味,解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的事物入手,引出数学问题,激发学生的学习数学的兴趣,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色多少块,黑色多少块,白色比黑色少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法。
让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
解方程教学反思11
今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。
一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的.还不错。
三、本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
四、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
五、学生对于方程的书写格式掌握的很好,这一点很让人欣喜。
总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待。
解方程教学反思12
《解方程》这部分内容,是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数思想有着极其重要的作用。
在开课时,通过复习哪些是方程,巩固方程的含义,为后面教学作铺垫。
教学时,我让学生自己说出推想过程,一边板书,一边指出解题的想法,然后着重讲解检验的方法及书写格式,并在后面的巩固练习当中加入口答检验,根据课本上的.“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
在出示概念时,先让学生自学了概念。自学完概念后,应让学生对两概念讲讲自己的理解,自己勾画出重点字,然后才是教师对概念重点的强调,这样更能区分两概念不同的含义,对难点的突破也是一个很好的方法,可以让学生将易混易错的地方,清楚理解后,明确两概念的区别,这点在课上忽略了。
在后面的反馈练习时,因前面例题的格式讲的还不够明确,所以练习时有点反复,但在后面的练习中学生已完全掌握。巩固练习的层次很好,由易到难,对学生的学习有突破,学生完成的正确率也很高。
这节课整体来说我比较满意,对于细节上的处理。在今后的教学中我会更加注意,使教学更加严谨,也会更注意教材的研读,争取上一节完美的好课。
解方程教学反思13
教材是利用等式的性质来解方程。通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立,等式两边都乘一个数(或除以一个不为0的数),等式仍然成立的性质。利用探索发现的等式的性质,解简单的方程。如求出y+8=10中的未知数y。教材呈现了两种思路。一种是学生直接想“?+8=10”,从而得出答案。另一种是利用等式的性质解方程,即“方程的两边都减8”的方法。y+8-8=10-8,y=2。这样解方程,刚开始时,为了学生理解方便,等号左边的“+8-8”都要写出来,会比较麻烦,也容易出错。《数学课程标准》提倡算法多样化的新理念,激发了我对解方程这课从不同的角度来进行解读和探讨,因此,在学生理解了用等式的性质解方程后,我又留给学生一定的.时间和空间,让学生独立思考,发挥各自的聪明才智,自主探索,找出不同的解题方法。
学生经历了独立思考,掌握的知识才更深刻、更透彻。久而久之,将促使学生养成独立思考的习惯,培养了学生解决问题的能力。将学生的方法整理后,我又适时给学生提供了另外两种解方程的方法,利用加、减、乘、除法各部分之间的关系来解方程和通过移项来解方程。
解方程教学反思14
今天上了解方程(二)的内容,感觉没什么明显的精彩地方。学生由于有了关于加减的等式的性质的`了解,在通过例题中两组方程的观察,适当提醒学生联系前面学习的等式的性质,很自然的就能得出有关乘除的等式的性质。
只是在让学生举例的时候,没有学生能想到同时除以0,结果是怎样的。只能由自己向学生提出问题,简单讨论后,很快想到除法中除数不能为0,因而得出同时除以一个不为0的数的范围。
计算中有较多的问题,特别是很多学生对于小数的乘除法计算,有很多的错误,需要加强巩固训练。
解方程教学反思15
一、认知基础的“顽固性”
心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。
以前教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的.关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,比较两种思路:第一种方法是把未知数x优先从背景中筛选出来,依据四则运算各部分之间的关系求出x的值;第二种方法用“结构性观点”去看待方程,着眼于其所表明的等量关系,体现了方程思想的本质,较好地解决了中小学关于方程解法的衔接问题。《数学课程标准》也明确要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。那么,教材编排的价值是不容置疑的,即不能因为学生思维的轻车熟路,而忽视新知的教学,忽视学生数学思想的进一步提升。利用关系式这种方法解方程书写较少,形式简单,但教学时总碰到差生不理解关系式也记不住关系式,因此在解方程时因想不起关系式而不会解。这几星期的教学,我发现孩子们还是比较喜欢学的,学得也不错,教材利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。教材又通过天平平衡原理过渡到等式的性质,从而利用等式的性质教学解方程,使得解方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,学得不错,但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。我发现用等式性质教这类方程,比较麻烦,学生学起来有一定难度。
二、两种方法形式上的相似引发学生思维的惰性
第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。
方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。
【解方程教学反思】相关文章:
《解方程》教学反思03-28
《解方程》的教学反思09-17
解方程的教学反思02-26
解方程二教学反思12-29
数学解方程教学反思03-28
《解方程(二)》教学反思04-07
《解方程二》教学反思04-07
《解方程》教学反思 15篇04-07
《解方程》教学反思 (15篇)04-07