现在位置:范文先生网>心得体会>教学反思>《鸡兔同笼》数学教学反思

《鸡兔同笼》数学教学反思

时间:2023-02-08 17:15:33 教学反思 我要投稿

《鸡兔同笼》数学教学反思13篇

  作为一名到岗不久的老师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么什么样的教学反思才是好的呢?以下是小编精心整理的《鸡兔同笼》数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《鸡兔同笼》数学教学反思13篇

《鸡兔同笼》数学教学反思1

  昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?....带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!

  一、导入

  1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)

  t了解学情

  2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。

  学生独立尝试

  3、s1:二年级用凑数的方法。五六年级用假设的方法。

  s2:五六年级还可以用方程解。

  4、t:三种方法了,一年级可以用什么方法?

  s:用画的方法。

  t:用一年级的方法画。(先鸡头再变成兔头)

  t:七八年级是怎样解决的呢?

  s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级

  二、讨论各种方法的异

  1、面对这种方法你有什么想法?

  t:你认为这四中方法哪种方法最简单?

  t:最难的'是哪一种?

  学生得出数据大的时候,画的方法很难。

  为什么一年级会做更难的呢?

  s:因为一二年级的做法思路简单。

  t:各种方法的主要特征?

  s:第一种方法的特征是画出来

  s:第二种方法的特征是凑出来

  s:第三种方法的特征是算出来

  s:第四种方法的特征是解出来

  三、分类

  1、t:四种方法分成两类,你认为怎样分?

  s1:一、二种为一类 三、四为一类

  t:还有没有别的分类呢?

  (在老师的一只手举起来了,两只手举起来了,三只手举起来了...在耐心的等待中,学生的思维又进入了积极的状态中)

  s2:一、四为一种、二三为一种。

  小组讨论。画的一类。

  s3:一、三为一种,二四为一种。

  一、三都是假设的。

  二、四都是设鸡为1只,兔为7-1,同方程的解。

  t:三种分类,还有吗?

  s:一、二三为一种,四为一种,根据有没有*

  s:其实怎么分都可以,他们都有共同点。

  t:四种方法一样在哪里?

  s:都是用假设的方法。(第五种)

  四、优化分类

  t:哪一种分类方法最有智慧?

  s:一二为一类、三、四为一类,因为一二形象化、三四简单化。

  三是一的简单化 二是四的形象化

  一是三的形象化 四是二的简单化

  t:三四是一二的升级版。

  t:如果一个小朋友学不会,你怎么教他?

  五、小结

  面对这份材料,你有什么想法?

  数学有共同点,简单带来复杂,复杂的带来简单。

  生:数学是一步一步的演化而来的。

  t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子...从懵懵懂懂的一年级到六年级,学了不要扔。

《鸡兔同笼》数学教学反思2

  数学教学是一门创造性的艺术

  xx年12月3日至4日,全国名师小学数学有效课堂教学观摩会在德州举行,非常感谢学校给我们提供这么好的学习机会。在这次活动中,我领略了几位名师的教学风采,欣赏了他们高超的教学艺术,同时也感受到了他们对数学教学执着的追求,使我受益匪浅。无论是从他们的课堂上还是报告中,我都能深切地体会到数学教学是一门创造性的艺术。

  在第一天上午的教学观摩活动中,我们就欣赏到了杭州特级教师刘松的课,让我们一饱眼福。刘老师幽默的语言,独特的教学风格不仅深深地吸引了学生,也吸引了在座的各位老师,当课堂结束,孩子们坐着还不想走的时候,我就被感动了,刘教师正是通过自己的“创造”,让他们“感觉”乘法分配律的本质,为学生展现出“活生生”的思维过程。杨秀清老师的鸡兔同笼以巧妙创新的设计让学生沉浸在探索研究的氛围中,真正达到了其乐融融的课堂效果。张冬梅老师是一个爱数学的老师,是一个爱钻研教材的老师,也正是如此,她可以用创造性的教学设计将抽象的概念具体化,可以在互相地配合与协作中,使师生关系变得融洽,创设民主和谐的学习活动气氛。钱守旺老师在数学教学中,大量地运用丰富多彩的多媒体素材辅助教学,还有他的.20个课堂教学主张,都让我大开眼界,数学教学不仅仅是科学,更是一门创造性的艺术。在深刻理解教材的基础上,创造性的使用教材才是最高境界。数学从表面上看来是枯燥乏味的,然而却具有一种隐蔽的、深邃的美,一种理性的美。数学美是数学科学本质力量的感性与理性的显现,是一种人的本质力量通过宜人的数学思维结构的呈现。是一种真实的美,是反映客观世界并能动地改造客观世界的科学美。最后王彦伟老师的《图形的旋转》将数学的这种美呈现的淋漓尽致,使数学教学过程成为了对数学美的一个反映过程。

  在今后的教学中,我会学习各位名师的方法、经验,以富有审美价值的独特的方式方法,创造性地组织教学,使教与学双边活动协调进行,使学生能积极、高效地学习,使学生感受数学教学美的教学技能技巧。

《鸡兔同笼》数学教学反思3

  一年一度的校本教研--“两课两反思”活动如期而至,有幸代表六年级数学组参与其中。这次活动的主题为“数学思考”,根据这一主题,会同本组老师意见和自身条件,结合学生实际认知水平,我选择了执教人教版数学六年级上册数学广角的一节内容--鸡兔同笼。

  这一题材,在不同版本的教材其编排不尽相同。如:北师版教材借助“鸡兔同笼”这一载体让学生经历列表--尝试--再调整的过程,体会解决问题的一般策略--列举,旨在通过对一些现象观察、思考,是学生发现一些特殊的规律,获得解决问题的方法;人教版教材则先后呈现了猜测列表法、假设法、列方程、抬腿法等,注重体现不同的解题思路和方法,旨在观察、猜测、实验、推理等活动,培养学生的逻辑思维能力,使学生体会代数方法的一般性;而苏教版呈现的是画图与列表,但更强调画图。

  对于“鸡兔同笼”问题,一些学生通过校外的辅导班曾学习过,学生知道如何求解“鸡兔同笼”的方法,但对于为什么是这样却说不明白其中的原因。而这一课题,xx、xxx、xxx、xxx等名师都上过,也有不少经典的教学案例,但其侧重点不同,风格也不一样。面对自己的学生,他们的教学案例不一定适用于我们学生实际。同一个载体---鸡兔同笼问题,不同的老师,在不同的学段可以教出不同的知识点。教材其实只是个载体,同一个题材你可以赋予它不同的使命,这也许就是大家常挂在嘴边的“用教材教”。钻研教材,除了研究教材所蕴含的知识,我觉得更要深入地了解知识的来源及其背景。研究的目的除了找出重点、难点和关键,更重要的是挖掘数学知识中的数学思想方法。以此为依据,我在教学这一内容,应该可以上出我的“新意”。我能留给孩子些什么呢?我想到了解题策略、数学模型、数学文化??

  站在大师们的肩上,结合学生的实际及我对教材的理解,课始由猜硬币游戏引入,有效激发学生的学习积极性,并对后续“鸡兔同笼”的研究奠定解题方法基础,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的.去阅读书中的一段阅读资料,了解古人的解题方法。老师再利用多媒体课件展示当代的张景中院士等人新解法。

  通过介绍这些从古代到当代,从画图、列表、假设到方程等方法,揭示人类从对问题的坚持不懈地研究中获得乐趣,从数学文化的角度对本课进行拓展。最后就是利用学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。

  鸡兔同笼”原属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的知识经验,不断调整解题策略,在汇报交流中,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,学会倾听,在倾听中分享他人的不同的解题方法和策略,积累自己解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。

  特别是用假设法解答,学生理解起来很难,为此我利用课件展示的图片的方法来帮助学生理解,这样把抽象的知识直观化了,学生很快理解了这种方法。在教学中我做到了三个“注重”。一是注重了沟通列表与假设法、抬腿法、列方程等方法之间的联系。二是注重了学生对数学模型的建立。课前,我仔细揣摩了郑毓信教授在《数学教育哲学》中的一句话:“数学教学的基本任务就在于帮助学习者逐步建立与发展分析模式、应用模式、建构模式与欣赏模式的能力。”我怎样将这样的理性论断转化为教学行为,让学生在学习中感受到一些数学问题所具有的“模型”力量呢?带着这样的思考。我做了如下教学尝试。

  一、猜测游戏,引入新课,增加开课的趣味性。

  二、尝试学习,独立思考。有选择地让学生交流几种典型的解法,是对独立尝试解题过程的适度敛收,是对教学进程中动态生成的教学资源的甄别与有效利用;教师有选择地呈现学生的不同解题策略以及适当的点拨和精当的补充,凸显教学是教与学的统一。从展示不同做法中,进一步拓宽了学生的视野,感受数学文化、数学思维不仅有理性的深邃,也有感性的快乐。

  三、优化算法、建立模型。通过对几种典型解法的梳理、分析、比较,使学生在掌握不同解法的同时,能懂得这些解法之间的区别和联系。在解决问题的过程中逐渐形成鸡兔同笼问题的“数学形式”及其解题策略体系,建构起鸡兔同笼问题的数学模型。人狗同行问题的介绍使课堂又增添了几分鲜活。

  四、运用所学、解决问题。设计立足生活的的问题情境使学生在实践中领悟数学建模的价值,增强学生数学应用的意识与能力

  回顾两次的执教,存在一下问题,值得我们进一步提高与思考:

  1.由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。学生汇报时,老师引导多了点,可以多找学生汇报,其他学生可能会听得更明白。

  2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。

  3、没引导学生用画图的方法解决问题,是否少了从形象到抽象的过程。

  4、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。

  5、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;

  6、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力,在此方面还需待提高。

《鸡兔同笼》数学教学反思4

  银色的十二月,我带着渴望知识,渴望提高,渴望发展的心情,来到了小学数学观摩研讨会。有幸听了刘松执教的《乘法分配律》、张冬梅执教的《米》、杨秀清执教的《鸡兔同笼》、钱守旺执教的《24时计时法》、王彦伟执教的《图形的旋转》,印象非常深刻,收获颇丰,感触良多。下面,就几节深有感触的课谈一下我自己的体会。

  《乘法分配律》是一节枯燥的数学知识课,可在刘老师风趣幽默加肢体语言的点拨下,整个课堂充满着欢声笑语。一节课的只是在延伸,快乐在持续。乘法分配律让学生在观察思考尝试中轻松达成,学生们能用不同的符号表示乘法分配律,真是难能可贵。整堂课,刘老师关注学生情感、兴趣,创设有趣的教学情境,无论课前的谈话还是课堂中的肢体语言都最大限度的调动学生的注意力和兴趣,让学生快乐着,探索着,并时刻体验着成功的快乐。如当一名学生概括乘法分配律就是把一个算式时,刘老师适时赞赏“你真厉害”,我想当学生听到老师这句话时,他的.大脑会高速运转,心里比吃了蜜还甜。我终于明白:数学课要让学生爱学,乐学。老师首先要一切从学生出发,充分调动学生的积极性。在今后的教学中,我要向刘老师那样让课堂变得轻松、愉悦、高效、成功!

  应该说,学生对“米”的认识是比较抽象的,张冬梅老师通过各种巧妙的活动设计,帮助学生建立了“1米有多长”的表象知识。而每一次的活动,学生们都完成的有序且有效。

  大胆放手,把时间交给学生,让学生在充分的活动中,有效学习,成为真正的学习主体,是这堂课最显著的特色,这也恰恰体现了新课标的精神。纵观整个课堂,在老师的引领下,开展了各种各样的小活动,所有的活动都是围绕教学重点展开的,且衔接的十分流畅自然,让学生沉浸在活动中的同时,不知不觉的加深了对“米”的认识。

  钱守旺老师的《24时计时法》,让我们感受到稳中求活,活中求实,实中求新,和谐自然的教学风格,有水平没架子的教育者。他借用陶行知的一段话说:“生活、工作、学习倘使都能自动,则教育之收效定能事半功倍。所以我们特别注意自动力之培养,使它关注于全部的生活工作学习之中,自动是自觉的行动,而不是自发的行动。自觉的行动,要适当的培养而后可以实现”。

  这次学习收获颇丰,给了我们一个新的教学上的起点,让我们从现在做起,从关注每一个学生开始,从尊重每一个学生开始,从满足每一个学生的需求开始,,从善待每一个学生开始,,从开启每一个学生的智慧开始,从改善对学生的评价方式开始,从改善倾听能力开始,从改善教学策略开始,从提升自我生命质量开始......

《鸡兔同笼》数学教学反思5

  一、教学目标达成的反思

  《数学课程标准》指出数学教学活动必须建立在学生认知发展水平和已有的知识经验之上,以生为本,已学定教,顺学而导,要让学生成为课堂的主人,尊重学生,还课堂给学生,就必须认真钻研教材,领悟编者意图,教材知识地位及前后联系,认真研究学生,了解学生已经知道了哪些知识和解题策略。在最初设计这课时,我把列举法中的表格画在黑板上,让学生根据条件鸡兔共有8只,先猜测鸡兔可能各有几只填入表格中,再根据另外一条件总脚数是26只,通过验证得到笼子里鸡兔到底有几只,但在我巡视时发现大部分学生都在根据条件无序的猜测,有的同学把猜测的过程简单的记录在草稿纸上,有的干脆就不记录,通过不断地调整最终找到了答案,这样就不能形成完整的表格,更不能引导利用表格发现猜测过程中的规律,用时过长且无法自然的过渡到假设法。所以再次试教,我把这一环节及时做了调整,要求学生把猜测的过程记录在课本的表格上,这样大部分学生会按照一定的顺序进行猜测填表,有的同学逐一填表,有的没填第一列和最后一列,有的跳跃填表,还有同学填出答案后不再继续填表,出现了这么多种不同的结果,反映了不同学生的不同思维高度,既达到了列表教学目标。

  二、教学过程执行的反思

  这节课教学过程的主线是:出示问题—分析问题—解决问题—建立模型—推广应用。整个教学过程学生自学与他人交流相结合,老师引导与学生探究相结合,用问题推动学生不断思考,让学生参与知识形成的过程,注重学生亲身体验感受。列表法的优点是方法比较简单,但数据比较大时效率低,不能作为解决鸡兔同笼的一般方法进行推广,是不是在教学过程中可以一带而过呢?通过对教材的研究和分析,绝对不能一带而过,表中蕴含了鸡兔头脚变化的规律,把一只鸡看成一只兔就会增加两只脚,这样就和假设法对应起来了,充分分析表格规律,为假设法的教学奠定了基础,在教学假设法时水到渠成降低了难度。在列表时,学生势必要计算出总脚数,在求总脚数时利用到了方程法的等量关系,列表法是基础是纽带,将不同的解决方法联系起来,形成知识的'完整体系。在讲授假设法时,学生最不容易理解4-2=2(条)的意义,试教后决定在充分挖掘表格中的规律,小组合作、师生共同探究的同时,以课件演示为辅助手段,让学生明确假设笼子里全是鸡,这时就比实际少10只脚,少了的脚其实是把兔子看成鸡时兔子少的脚,把一只兔子看成一只鸡少两只脚,所以10里面有几个2就有几只兔子。将学生的认知经验和思维过程转化为数学算式,突破了难点,形成了解决问题的策略,提高学生的思维水平和推理能力。接着又通过拓展练习让学生感觉到数学源于生活,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学就在身边。

  三、课堂教学中的一些不足

  本节课是在试教的基础上基本实现了预定的教学目标,同时存在着很多不足

  1、由于是借班上课,对学情了解不充分,上课时有点紧张,列表法忘了板书,后来又补上的,在平时的教学中应不断提高调控课堂的能力。

  2、在讲授假设法时课件的展示有助学生形象直观的理解,让复杂问题简单化,但却不利于学生抽象思维培养,淡化了数学课的数学味,以后应有选择的使用课件,让课件为教学目标的达成服务。

  3、教学时教学语言平淡,缺乏激情,缺少适时的鼓励评价语言,应及时关注学生的状态和课堂的生成,让学生做课堂的主人。在以后教学中我将不断努力学习,从多方面提高自己,争取尽快成长做一名合格的数学教师。

《鸡兔同笼》数学教学反思6

  教学完《尝试与猜想》一课后,在一张综合练习的题卡上,出现了这样一道题。“鸡兔同笼,有17个头,24条腿。鸡兔各有多少只?”这是课堂上练过的习题,并没有什么难度,我想孩子做起来应该是没有问题的。一个学生问我,“老师,这道题可以用“假设法”做。可是我已经忘了假设法怎么做了,你能告诉我吗?”我沉吟了片刻,回忆了一下我上“鸡兔同笼”的经过。

  鸡兔同笼出现在“尝试与猜想”中,既然课题是《尝试与猜想》,那么编者的意图一定不再是让我们教给孩子做此类题的技巧,而是通过合理猜测和调整达到想要的结果。不管是枚举还是列表,都是要不断调整自己的假设结果里正确结果更近。也就是要在一个合理区间中不断逼近正确的答案。我记得当时是通过一个幸运52的“猜价格”导入的。孩子在课堂中也展现了自己的很多思路,包括画图,有的孩子还在课外书上读过说让兔都抬起前腿,鸡都金鸡独立。这些有趣的解答方法虽然没有代表性,但也为课堂增添了很多乐趣。孩子对鸡兔同笼问题的记忆还是很深刻的`。后来我简要介绍了“假设法”。其实以前我们奥数内容是直接把这种方法教给孩子。这种方法孩子不易理解,也很难自己探索到,但老师教会后,这确实是解答此类问题的最有效方法。在新课改后,我们理解的是:让孩子获得解决问题的方法比掌握一点知识更重要。所以再讲鸡兔同笼问题,课堂的主阵场交给了孩子,孩子自己先列举再调整,这样是费了一些时间。“假设法”的介绍时间相对就短了许多,孩子当时听懂了,过一段又忘了,这实在是再正常不过的事。

  这是个聪明的学生,见我半天没有回答,马上说:“老师,其实我记得这节课的内容,就是一时忘了怎么做了。”我说;“那你可以列表看看呀!”。“老师,列表我会,可是那得好一会才能找到答案,太麻烦了,请你告诉我假设法好吗?”我乐了,这孩子并不是解决不了问题,而是怕麻烦。我说:“麻烦点没事,遇事别钻牛角尖,只要能做出来就行”这是个很执着的孩子,他不肯走,一个劲的说:“老师,请你告诉我吧”我又按照课堂上的讲法

  给他讲了一遍,他很快听懂了,高兴的走了。我实在不能保证他是不是过一段还会忘。

  这件事过去了很久,我一直在想,新课改后,老师的许多观念都发生了变化。我们想给孩子最有价值的东西。最有思维价值的数学方法。希望这些数学思想和方法能伴随孩子的一生,即使在以后的生活工作中不做数学了,也可以用这些思路和方法来解决一些其他的问题。所以我们的价值取向就变了。当时间发生冲突时,我们更愿意让孩子多感受多经历,相对讲授和练习的时间就少了。象鸡兔同笼这样的问题学生掌握假设法,不反复练习是很容易遗忘的。但是一节课的时间是有限的。孩子的经历也是需要大量的时间。就我们现在的价值观来取舍,我们选择了让孩子来自己体会尝试与猜测的快乐!可是,这个孩子的一句话却一直在我的心里回响:“老师,那样太麻烦了,请你告诉我吧”孩子有他自己的价值取向,他认为猜测再调整太麻烦,当他没有学到“假设法”时,他没有比较。但当他比较之后,他执着的选择了这个简洁的方法。虽然这个方法对于一个孩子的思维来说还是有点生涩难懂。但是,简洁明了不正是数学的魅力吗?我们总是想通过一些别的东西让孩子感受数学的美,当孩子感到数学的魅力去追寻时,我们还迟疑什么呢?对于课改,我们应以平常心去看待。我想,以后我遇到这样的问题,我一定不会迟疑。我会很高兴的告诉他:“孩子,你选择了最简单的方法,老师乐意给你再讲一遍。”

《鸡兔同笼》数学教学反思7

  课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路,这也是我校推广的三环六部教学法。

  师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的`13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。

  虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。

  就本堂课而言,还存在以下问题;

  1、由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。

  2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

  3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。

《鸡兔同笼》数学教学反思8

  《鸡兔同笼》一课是北师大版小学数学五年级上册“数学好玩”板块中“尝试与猜测”一课的内容,本节课思维含量大,对学生来说难学。解决这道数学古题、趣题的方法有好多种,但教材只向学生介绍了“列表法”这一种方法。现对本节的教学做以下反思:

  一、课前思考

  1、紧贴教材,使用教材。

  “鸡兔同笼”问题的解决方法有好多种,但是教材只向学生介绍了“列表法”这一种。因为“列表法”是解决问题最常用、最一般的方法,针对的是百分之九十的学生能完全掌握,做到了几乎面向全体,关注差异。而表格中的数据又能让学生更直观的进行探索规律,规律的掌握又能促进学生更好地利用列表快速解决问题。同时“列表法”这一解决问题的策略从数学层面上讲具有广泛性,我想这也正是教材采用它的真正目的,做到了“授之以渔”。因此,在本节课的教学中我紧扣“列表法”进行教学,让学生熟练掌握“列表法”这一方法。

  2、尊重学生,找准起点。

  “鸡兔同笼”问题对于小学生来说“难”,要突破难点,就要把握学生的认知起点。孩子们的困难在于如何应用“列表法”进行逐一举例,以及通过表格发现“鸡兔同笼”问题中所蕴含的规律,而非合作探究出“跳跃举例”和“取中举例”这两种列举方法。因此,在教学中我将教学重点设置为引导学生经历逐一举例和规律探索,有了这一铺垫,学习的难点就迎刃而解。

  3、方法教学,注重引导。

  数学教学就是方法教学,在本节课中我想交给学生的方法有:解决问题尝试猜测;遇到难题化繁为简;观察数据,先分后总;探寻规律,注重合作。学习方法的渗透对学生来说价值更大。

  4、关注学生,积极参与。

  教师是学生学习的引导者、组织者和合作者,学生在学习的过程中,我要及时参与到他们中来,帮他们解疑释惑。促进学生更加高效的学习。

  二、课后思考

  (一)从课标角度去看

  1、《课标》理念

  使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

  2、体现四基

  一节好的数学课应该体现四基:不但要让学生掌握数学基础知识,训练数学基本技能,还要领悟数学基本思想,积累数学基本活动经验。

  3、培养核心素养

  除此之外,我还注重数据分析观念、运算能力、推理能力、应用意识和创新意识这些核心素养的培养,力求学生全面发展。

  (二)从教材的角度去看

  1、紧贴教材编写意图

  在有限的四十分钟内让学生学会解决“鸡兔同笼”问题,“列表法”是众多方法的基础,因此本课教学针对“列表法”展开教学与探索。

  2、学会使用教材

  作为一个教师,要合理地使用教材教而不是教教材,因此我们要深挖教材,把表象的东西形象化,在本课中借助“鸡兔同笼”化简题向学生渗透“化繁为简”的数学思想,借助表格让学生探寻“鸡兔同笼”问题中所蕴含的规律,找到精髓,提供给学生解决“鸡兔同笼”类型题的方法,学会举一反三。

  3、创新教材

  表格对于学生来说并不陌生,但学会列表,表格中的项目怎么填对学生来说较难,因此对于列表法的形成我采用了动态化的活动,先让学生猜有9个头,鸡和兔会有那些可能,这样很自然形成了表哥的前两项,再出示有26条腿,那么刚才的猜想都对吗?为什么?学生这时就会想到还要看每次猜想的鸡和兔的腿数是否是26条才行。这样就形成了第三列,让表格形象生动起来,同时也降低了学生学习的'难度。在课尾,向学生介绍古人用的方法以及其他解决的方法,不但让学生体会到古人超长的智慧,还拓展了他们的知识面。

  (三)教师的角度

  1、引导者

  始终做一个引导者,把学生引到探究的路上,在恰当的时机进行点拨,帮他们解疑释惑。

  2、组织者

  当学生学到本节的重点时,我就及时组织活动,让他们通过操作活动来探寻知识,掌握方法。

  3、参与者

  在学生的合作学习中,做一个参与者,和他们一起思考,找准学生的疑惑之处进行点拨指导。让学生的合作学习更有效。

  (四)学生的角度

  1、找准起点

  学生的学习基础决定这学生的起点。孩子们学这节课有困难,虽然“取中列举”和“跳跃列举”对学生来说是难点,但规律的探寻对学生来说更为重要。只有掌握了规律学生才能情不自禁的使用“跳跃列举”和“取中列举”,这样难点对学生来说就不是难点而是意外的收获,更让他们惊喜。

  2、学习方法

  学生在整个学习中始终是学习的主人,动手实践、自主探索与合作交流也是他们本节课学习数学的重要方式,也是学生喜闻乐见的方式,这样的学习效果更佳!

  3、学会知识与方法

  孩子们在本节课中不但学会了用列表法解决鸡兔同笼问题,同时还收获了解决问题的策略尝试与猜想;解决难题的方法化繁为简;观察的顺序由上而下或由下而上,先分后总的有序有效观察。

  三、不足

  1、本节课由于要让学生充分的探索与体验因此在时间上有所拖延。但是对于学生掌握知识来说,只有充分体验了才不会忘记。我想多给学生一些等待,静待花开的声音!

  2、本节课的氛围不够浓厚。

  本节课的思维含量比较大,学生随着学习内容会不断地去思考,理性大于感性,因此本节课不是热热闹闹的课堂。

  我想,“鸡兔同笼”问题不只是知识的传授,它更想传播一种思维的方式和思考的方法。

 问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。

《鸡兔同笼》数学教学反思9

  通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。

  这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”

  “如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的'实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:

  1、体现了解决问题策略的多样化与优化

  鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。

  2、注重了数学思想、数学文化的传承

  “鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。

  3、形成了假设的数学思想

  课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。

  4、构建了该类问题的数学模型

  在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。

《鸡兔同笼》数学教学反思10

  本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。

  但是,可能是由于我课前准备不够充分,或者驾驭课堂的能力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的`情况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生通过表格的形式进行观察,并没有引导学生到比较实际的方向上。如果我能插入具体的鸡和兔的只数变化时的动态图像,学生应该能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。

《鸡兔同笼》数学教学反思11

  1、教学目标的定位

  我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。

  教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。

  2、凸现学习价值

  我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的`举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。

  3、关注结果,也关注过程

  结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。

  本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固

《鸡兔同笼》数学教学反思12

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的`内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

《鸡兔同笼》数学教学反思13

  一节好的数学课应该让学生懂得一个知识点,获得一种思想,积累学习经验,行走在形成某种技能的路上。教学完鸡兔同笼,我留下了这样的感悟。

  鸡兔同笼是六年级数学上册“数学广角”的内容。本节课作为本册教材“数学广角”中唯一的教学内容,它的价值在于它不仅是一道我国民间广为流传的数学趣题,而且它是生活中的一类典型的问题,研究这类题,不仅使学生学习一种数学思想,而且收获解决策略与方法的同时,培养学生的逻辑推理能力。

  研读教材后,我依据新课标,从设计理念到教学目标及重难点的确立都做了认真地思考,连教学环节都是几经修改的,但整个课堂教学效果实在有些汗颜。

  一、“猜测”形同虚设。

  其实,列表法,假设法,方程法解决问题的策略都是同“猜”字而生。猜测是一切发明创造的开始,也是思维的开始。学生应该历经一个猜测----验证----调整---最终找到正确答案的思维成长过程。而我把“猜测”只作为一个课堂环节,一个程序,没有将猜测与后面的环节建立联系,致使“猜测”环节形同虚设。

  另外,在学生猜测后,老师应及时引导学生思考,如果发现猜测不对,腿的总条数多了,该怎样调整;反之,又该怎样调整,其实调整的过程,就是让学生自然而然地发现每一次调整,一个一个地增,或一个一个地减,腿数之间都相差2。这是关键。应该给学生后面的自主探究起到抛砖引玉的作用。同时,也为学生的自探究明确了目标和指明了方向。这样就不会出现后汇报中的“尝试法”的孤立无援了。

  虽然列表尝试法在学生的眼中是一种笨拙的方法。但本节课的列表尝试法是让学生经历由常规逐一举例向减少举例次数的过渡,实现“跳跃式”列举,而且在学生在思考、交流、感悟的.数学活动过程中,渐渐地发现其中的规律:“每增加一只鸡同时减少一只兔,就会减少2条腿;反之,每增加一只兔同时减少一只鸡,就会增加2条腿。”学生在这样发现下就很容易找到了“假设法”的影子。为下面的假设法的策略解决问题做了提前渗透和有力地铺垫,同时也能感受到量与量之间的共变关系。然而由于我把尝试法探究活动与寻找其他策略并入一个学习活动中,使得学生只顾去寻找其他的方法,而有的同学直接忽略尝试法,失去了此处探究活动的价值和意义。如果我能分步实施,细化活动要求:活动一、列表尝试,汇报后,再进行活动二:寻找其他策略,就不至于出现汇报中的“混乱”。

  二、数学课上的语言规范性有待加强。

  在数学课堂上,老师不但要有深邃的思想,渊博的知识,娴熟的教学技巧与方法,还要讲究教学语言的准确明晰,具有逻辑性。本堂课假设法算理是一个难点,如果老蚰能用清晰而准确,富有逻辑性的语言把算理引导出来:

  假设笼子里都是鸡,一共有几只脚?条件告诉我们几只脚,这样就少了几只脚呢?为什么会少了10只脚呢?这样就能使学生理解得更清晰更明朗。所以我感到教师的言之有序,才能成就学生的有序思维。

  当我上完了课,我留下了开篇的感悟。由于本课的诸多不足,后面的习题一道也没有练。对这种低效的课堂我有些惭愧,但我想“教后知困”。使我看清了自己努力的方向。“工欲善其事,必先利其器”。看来,在数学教学的这条路上,加强身身的数学修养是教好数学的根本。

【《鸡兔同笼》数学教学反思】相关文章:

《鸡兔同笼》数学教学反思01-20

数学鸡兔同笼教学反思(精选13篇)12-16

《鸡兔同笼》数学教学反思11篇03-21

《鸡兔同笼》数学教学反思(11篇)03-21

鸡兔同笼教学反思02-15

《鸡兔同笼》教学反思03-09

鸡兔同笼教学反思15篇02-26

鸡兔同笼教学反思精选15篇04-03

鸡兔同笼教学反思(15篇)04-01