现在位置:范文先生网>心得体会>教学反思>《反比例》教学反思

《反比例》教学反思

时间:2023-03-13 13:57:19 教学反思 我要投稿

《反比例》教学反思

  身为一名刚到岗的教师,教学是我们的任务之一,借助教学反思我们可以拓展自己的教学方式,教学反思要怎么写呢?以下是小编为大家整理的《反比例》教学反思 ,供大家参考借鉴,希望可以帮助到有需要的朋友。

《反比例》教学反思

《反比例》教学反思 1

  我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。

  一、创设情景,引入新课。

  我选择了课本上的探究素材,让学生从生活实际中发现数学问题,从而引入学习内容。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。

  二、深入探究,理解涵义

  为了使学生进一步弄清反比例函数中两种量之间的.数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了例题1使学生对反比例的一般型的变式有所认识,设计例题2使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。

  三、应用拓展:

  设置例题3的目的是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。设置两个练习,让学生充分理解并掌握反比例函数的应用。

  另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!本次公开课得到备课组长刘燕老师的认真指导。

《反比例》教学反思 2

  一、教学设计方面

  首先我在学案的设计上做了改进,没有象以前那样把自己的上课流程全部体现在学案上,而是让学案仅仅起到一个导学的作用,提纲挈领式,在学案上出现的问题比较多,而把问题的答案留给学生自己去总结,我认为这样可以激发学生学习中的热情,让他们在学习的过程中不断完善学案。

  其次就是在新知识的展现形式方面做了改进,以前的学案我总是把本节课的知识点在学案上列出,通过教师的讲解让学生从学案上划出来然后背诵,学生没有经历新知识生成的过程,虽然在当堂课上学生看起来对新知识理解的较好,但过一段时间后遗忘的很快。本次的学案设计,我把新知识的学习定位为自主学习,在学案上提出了三个问题,让学生自己通过看书和小组内交流找出三个问题的答案,并把答案总结在学案上的空白处,使学生通过自学课本和小组交流,经历概念的生成过程,培养学生阅读课本和总结问题的能力。

  二、课堂教学方面

  上面谈了自己对本节课的教学设计和一些思想,下面从两个方面谈谈自己在本节课的课堂教学方面的一点体会。我认为本堂课比较成功的做法有以下几个方面:

  1、我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。本节课,若按老的教学路子,应先告诉学生什么是反比例函数,然后让学生把反比例函数的性质背下来,最后应用反比例函数的性质去解决实际问题,这样就完成了教学任务。而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。在这点上,我认为自己处理的比较好。我先通过两个例子让学生初步了解什么是反比例函数,让学生自己概括反比例函数的意义,画反比例函数以及将它与正比例函数比较,再通过小组讨论学生就自然而然的得出了反比例函数的的特征,且印象深刻。

  2、能驾驭教材,对学生提出的问题有灵活的解决办法并且在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。

  3、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。特别是在处理练习时,我让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的.状态。只有这样,才能极大地释放孩子的潜能。

  本节课的不足之处:

  在上课过程中,由于是借班上课,所以我对学生的情感关注太少。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

  通过本节课教学,使我意识到今后应注意如下几个方面:

  1、教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。

  3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

《反比例》教学反思 3

  第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……

  成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:

  红花的朵数和鸡蛋的个数成正比例吗?为什么?

  (3)和一定,一个加数和另一个加数成正比例吗?为什么?

  像上面的两个例子,有时很难判断。

  给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。

  给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。

  但是上面的两例在特殊情况下又都像是成正比例的。

  给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?

  给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?

  此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的'比值一定就行了。

  第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。

  下午第二节课的“实际测量”我大体是按照教材的思路组织学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!

《反比例》教学反思 4

  反比例关系是一种重《成反比例的量》教学反思要的数量关系,它渗透了初步的函数思想。所以本节课体现了以下2点:

  1、温故知新,渗透难点。

  本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。“成反比例的量”与数量关系是有本质联系的,都是研究两种数量之间的关系,而且是两种数量之间相乘的关系,因此在复习题中我让学生大量的复习了常见的乘法数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。

  2、重概念的形成过程,加强思维训练。

  学习数学概念的最终目的是应用于实际,去灵活解决实际问题,而实现这个目标归根结底依赖于对概念的本质理解。成功的概念教学是要在得出概念之前下功夫,要设计多种教学环节,利用各种教学手段使学生充分体验得出概念的思维过程,先做到对概念本质的理解,再顺理成章的'引出概念的物质外壳---即用语句表达。

  例如我在教学《成反比例的量》时,我通过复习常见的数量关系,从生活事例中引出数量关系,然后给这种数量关系一种新的理解,将这种数量关系重新定义为成反比例关系,给具备这种数量关系的数量重新定义为成反比例的量,沿着这条线索学生由浅入深,由表及里的体验了概念形成的过程。为帮助学生建构“反比例”的意义,课堂流程重点设计两大板块。其一是“选择材料、主体解读”的“原型体验”板块。在这一板块中,借助三则具体材料让学生经历商量选择、独立解读、交流互评和推荐典型等数学活动,积累了较多的与反比例有关的信息和感性认识;其二是交流思维、点化引领的数学化生成板块。在这一板块中,学生立足小组间的交流和思维共享,借助教师适时介入的适度点拨,生成了“反比例”数学概念,并通过回馈材料的概念解释促进了理解的深入,并能利用概念准确的判断两种量是否成反比例。

  在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。

  第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。

  第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。

  根据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。

  对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。

  在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学的理解,帮助学生更好的掌握!

《反比例》教学反思 5

  通过复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。

  从前几次学生的作业和考试情况来看,学生在用比例来解决问题的时候,有部分学生之所以没有完全掌握还是没有理解正、反比例的`判断,所以我在复习正、反比例的应用的时候应注重数量关系的分析,并且在分析的过程中注重培养学生]对生活经验加以深化和理解。通过本节课的复习,使学生再次掌握了正比例和反比例的概念,并使学生再一次的经历将一些实际问题抽象成代数问题的过程,进一步体会事物之间的联系和区别。在练习题的设计中我注重联系学生的生活实际,尽量选择离学生的生活接近的例子。

《反比例》教学反思 6

  具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

  创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的`解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

  本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。

  首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。

  其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。

  为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。

  在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。

  作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。

《反比例》教学反思 7

  经过二周的教学,对学生的学习有了初步的了解,本班学生的差生比较多,优秀生也不尖,在完成作业时不够积极主动,交作业没有及时,有可能在家没完成或者早晨想到学校后抄袭别人的作业。完成作业的质量也不高,每次作业全对的学生只有少数的几个。

  现在所学的内容是反比例函数,对有些学生来说理解困难,反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:

  (1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?

  (2)在常数相同的情况下,当自变量变化时,两种函数的函数值的.变化趋势有什么区别?

  (3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。

  课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。主要表现在:

  1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。

  2、重视合作交流,使学生在合作交流的过程中真正掌握作图的技能。

  3、相互评价可以培养学生之间团结合作的精神。

  在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。

  4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法。

  反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的能力。

  数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力。

《反比例》教学反思 8

  这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容 学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。

  生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的形成中逻辑性,严密性与连贯性的统一。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。 教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由

  A X B = C(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的'关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。

  教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。

  在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。

  所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!

  另外我们还可以结合图像,我们也可以很清楚的将两者区分开来!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。

  课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。

  教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!

《反比例》教学反思 9

  反比例关系是一种重要的数量关系,但由于这部分内容比较抽象、难懂,历来都是学生怕学、教师怕教的内容。教学中,充分了解了学生已有知识基础和原有的认知水平,尊重学生个性差异,探究新知时每一问题都鼓励学生或独立完成、或合作交流获得方法,教师只做简单必要的引导,自始至终让学生参与体验解决问题的全过程,这样就使学生在解决问题的过程中体会到可以有不同的方法,并在此基础上形成自己解决问题的基本策略,体验了探索新知、发现规律的乐趣,体会到数学知识的实用性。

  新知探究后,共设了三个层次的练习,是不同层次的`学生都得到发展,培养了学生严谨的思维方式和良好的学习习惯。整节课教师扮演好了自己的角色,真正起到了“引导者”“组织者”的作用,学生在学习过程中获得成功感,树立了自信心。

  一节课下来,学生掌握了反比例应用题的解题思路和方法,但是也存在不足——分析数量关系不够细,另外没有考虑到学困生接受能力慢,致使有的学生找题目中隐含的定量比较吃力,今后教学中要引起注意。

《反比例》教学反思 10

  教学目标:

  1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

  2.猜想

  师:今天我们要学习一种新的比例关系反比例关系。(板书:反比例)

  师:从字面上看反比例与正比例会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称正、反两宇为切入点,引导学生顾名思义,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1.探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2.小组讨论、交流。(教师巡回查看,并做适当指导。)

  3.汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  您现在正在阅读的`人教版《反比例的意义》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!人教版《反比例的意义》教学设计及反思生3:我认为第一个同学的说法不准确,应该换成增加和减小

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过瘦过小,思路过于狭窄,虽然学生易懂,但容易造成知其然,而不知其所以然。通过增加表3,更利于学生发现长宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(和一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4.做一做(略)

  5.学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1.基本练习。(略)

  2.拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的正方形的边长边长=面积(一定),边长和边长成反比例的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:能说出你的理由吗?有的学生说:因为乘积一定,所以边长和边长成反比例关系。对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:不对!边长不随着边长的扩大而缩小!这是一种量!一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:边长4=正方形的周长(一定),边长和4成反比例。话音刚落,学生们就齐喊起来:不对!边长和4不是相关联的两个量。

  反思:通过你能举一个反比例的例子吗?这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3.综合练习

  四、总结

  反思:

  《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

《反比例》教学反思 11

  教学过程:

  一.复习旧知、铺垫引新

  师:上一节课我们一起学习了正比例的意义,那么怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  生:两种相关联的量,一种量变化另一种量也随着变化,当这两种量中相对应量的比的比值一定,也就是商一定时,我们就称这两种量是成正比例的量。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,可以用式子y/x=k(一定)。

  教者板书用字母表示的式子。

  师:说得真好!×××你能再复述一遍吗?

  生2复述。

  师:那么同学们能判断下面两种量是否成正比例吗?为什么?

  出示:

  (1)时间一定,行驶的路程和速度

  (2)除数一定,被除数和商

  生1:时间一定,行驶的路程和速度成正比例。因为行驶的路程/速度=时间(一定)。

  生2:除数一定,被除数和商成正比例。因为被除数/商=除数(一定).

  师:在日常生活中我们经常遇到单价、数量和总价这三种量,你能说出单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  生1:这三种量有这样三种关系:单价×数量=总价、总价÷数量=单价、总价÷单价=数量。当单价一定时,总价和数量成正比例;当数量一定时,总价和单价成正比例。

  师:说得真好!如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  二.交流讨论、探究新知

  出示例3的表格。

  师:这里有一组信息,同学们仔细看一看这里提供了哪些信息?指名一生回答。

  生:这里告诉我们用60元钱去买本子时的几种可能发生的一些情况。

  师:嗯!请同学们围绕这样几个问题展开讨论:(出示讨论提纲)

  (1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  待学生讨论片刻之后师提问:谁来将刚才讨论的结果跟大家做个交流。

  生:表中列举了单价和数量两种相关联的量,一个量扩大另一个量反而缩小,一个量缩小另一个量反而扩大,在变化的过程中相对应的量的乘积始终是60。我想这两种量之间就是成反比例的关系。

  师:大家同意他的观点吗?

  生齐:同意!

  师:与正比例相比,大家觉得这样两种量有什么特征呢?

  生:首先要是相关联的量,一个量变化另一个量也要跟着变化。成正比例的两个量在变化过程中比值不变,而这里的两种量在变化的过程中是积不变。

  师:那我们就可以说,这两种量具有什么样的关系呢?

  生:这两种量的关系就是反比例关系。

  (教者根据学生的回答作相应的板书)

  师:真会观察思考!

  投影出示“试一试”

  师:你能根据表中已有的信息将表填写完整吗?

  生:每天运18吨,需要运4天;每天运12吨,需要运6天;每天运9吨,需要运8天。

  师:为什么这样填?

  生:每天运的吨数乘以时间要等于总吨数72吨。

  师:根据表中数据,你能回答表格下面的问题吗?

  生1:相对应的两个数的乘积是72。

  生2:这个成绩表示的是工地要运水泥的总吨数,它们之间的关系可以用式子:每天运的吨数×天数=总吨数。

  生3:每天运的吨数和需要的天数成反比例。因为每天运的吨数和需要的天数是相关联的两种量,其中一个量变化,另一个量也随着变化。在变化过程中,相对应的数量的乘积总是不变,都是72。所以,这道题中的两种量是成反比例的关系,每天运的吨数和需要的天数是成反比例的量。

  师:仔细观察刚才研究的例3和“试一试”,它们有哪些共同的地方呢?

  生1:它们提供的两种量都是相关联的量。一种量扩大,另一种量缩小;一种量缩小,另一种量扩大。

  生2:这两道题里面的两种量的乘积都不变的。第一道题中两种量的乘积都是60,第二道题中的两种量的乘积都是72.

  师:反比例的关系也可以像正比例一样用字母式子把它们的关系表示出来吗?

  生:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用:x×y =k(一定)来表示。

  三、巩固应用 、拓展延升

  1.师:请大家把书翻到第65页,“练一练”中每袋糖果的粒数和装的袋数成反比例吗?为什么?

  生:这道题中的每袋糖果的粒数和装的袋数成反比例。因为:每袋糖果的粒数和装的袋数是相关联的两重量,而且每袋糖果的粒数和装的袋数的乘积都是300。

  师:你认为要判断两种量是否成反比例,要从哪几个方面来考虑。

  生:一要看这两种量是否相关联,二要看相关联的`两种量的乘积是否始终不变。

  2.师:请大家把书翻到第68页,看书上的第六题。请大家写出几组对应的每本页数和装订本数的乘积,再比较乘积的大小。(稍等片刻)

  师:谁来汇报一下你写的几组乘积,它们有什么关系?

  生:我算了这样几组:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它们的成绩相等,都等于900。

  师:这个乘积表示的是什么呢?

  生1:这个乘积表示的是纸的总页数。

  生2:这个乘积表示的就是用来装订练习本的纸的总页数。

  师:每本练习本的页数和装订的本数成反比例吗?为什么?

  生:成反比例。因为每本练习本的页数和装订的本数是相关联的两种量,一种量变化的时候,另一种量也随着变化,在变化的过程中,每本练习本的页数和装订的本数的乘积保持不变。所以,每本练习本的页数和装订的本数成反比例关系。

  3.师:观察第7题中的两种量,每天装配的数量和需要的时间成反比例吗?

  生:每天装配的数量和需要的时间成反比例。

  师:你是怎样判断的?

  生:每天装配的数量和需要的时间是两种相关联的量,并且这两种相关联的量中相对应的量的积始终不变都是1600。所以每天装配的数量和需要的时间成反比例。

  4.师:下面我们一起看第8题,首先请大家根据方格图中的长方形将表格填写完整,并思考表格下面两个问题。

  稍等片刻后,师:通过表格的填写和研究,你发现什么了吗?

  生:我发现长方形的面积一定,长方形的长和宽成反比例。长方形的周长一定,长与宽不成反比例。

  师:为什么呢?

  生:长方形的长和宽是相关联的两种量,当面积一定时,长和宽的乘积是一定的,所以长方形的面积一定时,长方形的长和宽成反比例。而周长一定时,长和宽的和是一定的,积并不一定,所以长方形的周长一定,长与宽不成反比例。

  5.师:这里有一道题,同学们判断一下。

  100÷x=y,那么x和y成什么比例?为什么?

  小组交流讨论。

  师:同学们有讨论出什么结论了吗?

  生1:我觉得他不成什么比例。

  师:为什么呢?

  生1迟疑片刻后:看了不像。

  师:其他同学有不同意见吗?

  生2:我觉得这里的x和y两个量成反比例。

  师:能说说理由吗?

  生:我们可以将这个等式的两边同时乘以x,等式变为xy=100,这说明x和y的乘积是一定的,那么,x和y成反比例。

  部分学生不约而同鼓起掌。

  师咨询生1:同意他的观点吗?

  生1点头示意。

  四、课尾盘点、总结反思

  师:这节课你学会了什么?你有哪些收获?还有哪些疑问?

  生1:我知道了两个相关联的量,一种量变化另一种量也随着变化,如果两种量中相对应的量的乘积是一定的,我们就说这两种量成反比例关系,这两个量就是反比例关系。

  生2:在判断时,我们应该运用学过的知识,灵活判断,而不能看表面,比如老师出的最后一道题。

  师:同学们说得真好,希望同学们课后能利用时间找一找生活中还有哪些量是成反比例的量,以帮助自己更好的认识反比例。

  教学反思:

  本节课内容比较抽象、难懂,学生掌握有一定得困难。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。

  一、创设情境,激发求知欲望。

  我从学生身边发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知较好的创设了现实背景。

  二、深入探究,理解涵义

  在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。

  三、比较猜想,归纳规律

  我考虑到例题比较相近,因此要注意学习方式必须加以改变。因此我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。

《反比例》教学反思 12

  数学来源于生活, 又服务于生活, 联系生活实际创设问题情境, 是新课标精神的体现。教学中, 我从创设生活数学问题入手, 进入新课学习, 在学生掌握新知的基础上, 又回到问题情境的他讪, 同时还提供一个理具有综合性、开放性的题目: “你能举出一个正比例或反比例的例子吗? 为什么? ”在学生能准确由A X B = C 表示三量之间的比例关系后, 我又设计了这样一个环节: 请同学自己举一些生活中较熟悉的三量关系, 说说它们之间存怎样的关系, 再次回归生活, 让学生体验教学的价值, 这也是新课程教学理念――人人学有价值的数学。

  教学中, 我尊重学生的的`个性差异, 尊重学生的学习成果。如: 在学生知道了正、反比例的意义、关系式后, 我提出: “用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透, 又尊重了学生的个性发展和学习成果。

  练习与提高部分, 我打破了老师出示题目――自己完成――集体订正的模式, 而是通过练习型课件, 让学生自己判断正确性, 既充分挖掘各省市毕业会考试题这一课题资源, 又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”, 更大限度的激发学生的参与热情, 让不同的学生有不同层次的收获与提高。

《反比例》教学反思 13

  我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。

  生活是数学知识的源泉,正反比例是来源于生活的。

  其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的'感性材料,重过程练习

  课上学生基本能够正确判断,说理也较清楚。

  教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的。

《反比例》教学反思 14

  本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

  一、教学反思:

  教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。

  具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着面积、体积这样的实际问题,通过在压力一定的条件下冰面压强与面积的关系,圆柱体储气罐,矩形在面积一定的情形下矩形的长与宽的关系这几个例题,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,如冰面压强问题,问学生:“有没有滑过冰,在我们小时候没有条件,只能冬天在结了冰的冰面上玩耍”,简单的`一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

  二、不足之处:

  这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的板书形式展示出来,在一定程度上也节省了时间。

  以上便是我对这节课的感想和反思,还存在其他没有考虑到或者不足之处,需要进一步加强学习思考。

《反比例》教学反思 15

  我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。

  生活是数学知识的源泉,正反比例是来源于生活的'。我在本课教学中,首先通过系列训练,将教材知识转换为学生喜闻乐见的形式,不仅使学生思路清晰地掌握知识体系,而且能在规律上点拨启发,所以学生主动性高,回答问题时能从不同角度、不同方位去思考,既开动了学生脑筋,又培养了学习兴趣。

  其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习,让学生亲自经历知识的发生、发展过程,注重培养探究、创新意识,以达到教师主导与学生主体的有机结合,使零散的知识得到有效整合和扩展延伸,形成学生自己固有的知识体系.

  课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。

  教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!

【《反比例》教学反思 】相关文章:

《反比例》教学反思08-28

反比例函数教学反思04-05

《反比例意义》教学反思12-24

《反比例的意义》教学反思03-15

反比例意义教学反思01-04

《反比例函数的图像》教学反思03-06

《反比例》教学反思(精选8篇)07-07

正反比例的意义教学反思03-12

《反比例函数的性质》教学反思03-08