现在位置:范文先生网>心得体会>教学反思>《分数乘法》教学反思

《分数乘法》教学反思

时间:2023-04-04 18:33:23 教学反思 我要投稿

《分数乘法》教学反思

  作为一位刚到岗的人民教师,我们的任务之一就是课堂教学,教学的心得体会可以总结在教学反思中,那么优秀的教学反思是什么样的呢?下面是小编为大家整理的《分数乘法》教学反思,仅供参考,希望能够帮助到大家。

《分数乘法》教学反思

《分数乘法》教学反思1

  在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:

  1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。

  2、出示新课,让学生找单位“1”,画线段图分析。

  引到学生想:画图时,先画什么,再画什么?怎样画?

  3、根据线段图,写关系式。

  4、根据关系式列算式,并解答。

  学生根据自己的'想法,列出了两种不同的数量关系式,根据不同的关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。

  本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。

《分数乘法》教学反思2

  1.明确教材的地位和作用。这部分内容是在学生理解并掌握分数乘法的意义以及分数乘整数的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复杂的分数应用题也是在它的基础上扩展的。因此,使学生掌握这类问题的'解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。

  2.应用数形结合的思想。用线段图或其他方式的示意图帮学生理解“淘气的苹果是小红的二分之一”。

  3.运用类比迁移的方法。学生理解了6的二分之一的意义,在此基础上,提出“6个苹果的三分之一是多少”这一问题,让学生独立解决,由于学生有了前面的基础,学生解决起来水到渠成。

  4.营造民主和谐的教学氛围。教学中予以学生开放的空间,从复习中选数计算到用不同的方法解应用题,到练习中求小兰、小强的年龄,始终将学生置于享有充分民主和谐的氛围中,置于生动活泼、极富个性的数学活动中,提高了学生学习的兴趣。

  5.发挥团队合作精神。教学中以小组合作为主,学生在合作讨论中得到了不同程度的发展。

  6.鼓励学生用多种方法解题。通过用多种方法解题并进行比较,让学生亲身体会乘法解决问题的优越性。

  另外要给学生提供充分的思维空间和交流机会,充分发挥学生的主体作用。

《分数乘法》教学反思3

  每次上完公开课,我都会有这样的感想:如果让我再上一遍,我一定会这么上!从这节课中找到不足之处,然后再精雕细琢。可惜的是,我只能上一遍,要想上第二遍可能还要等上一年。所以,我要考虑全面,不能让这颗后悔药等到下一年。

  解决问题是王校长的拿手课,王校长给我们做了两次解决问题的示范课,我从中也学到一些关于解决问题的处理方式。相比王校长的课堂,我更显得捉襟见肘,拿不出台面。不过我能够学习王校长扎实的教风,让学生都能学会这节课的知识点是我的教学目标。为了达到我的教学目标,又有一个问题扑面而来:是小组合作?是学生自己探究?是老师讲授?想来想去还是想让学生通过探究来解决问题,针对学生不会的知识点可以重点加以辅导。可是,在我让学生在课前预习时发现,好多学生对于单位“1”还是很糊涂。不明白为什么前后的两句话单位“1”变了,变了该怎么办呢?了解到学生对这道题目的一知半解,我想很有必要帮助学生理清这两句话的含义。于是,根据课本上小精灵的提示,能不能引导学生通过折纸的方式来加以理解?果不其然,学生在刚开始学习分数乘分数的算理时就已经掌握了折纸的方法,那么这次也是通过动手操作感受单位的变化。从这点可以克服摆着我们面前的困难,由此激发学生更多的.探究欲望。

  通过这次讲课,我也看到自己身上的不足之处。对于学生出现的错误回答,并没有足够的重视,让学生的错误回答擦出课堂思维的火花。如果让学生对错误进行讨论或者重新思考,那么学生对知识的把握会更加牢固。鼓励学生主动思考,而不是一味教学生如何去做,怎么面对,怎么处理这一类题目。

  总之,今天的课堂改进之处还有很多,我会不断学习新教材,吸收新教法,让数学课堂充满思维火花!

《分数乘法》教学反思4

  本单元的重点有两个,而且这两个重点是交织在一起的:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。

  分析教学内容从数学应用的角度来备课,分数乘法这一单元学生只要能从具体的问题中判断两个数据之间存在的相乘关系即可,只是这个相乘的关系要有新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。教学时我重点关注以下几方面予以检测,从而把复杂问题简单化。

  ⑴让学生用画图的方式强化理解一个分数的`几分之几用乘法计算。

  ⑵强化分率与数量的一一对应关系。

  ⑶帮助学生理解一个数的几分之几与一个数占另一个数的几分之几的不同。

  ⑷利用分数进行单位互化,如:2/5时=( )分 1/5吨=( )千克

  在本单元教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。涂一涂、算一算的重点放在涂上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。

  求一个数的几分之几是多少。在教学中我突出了类比迁移和数形结合的方法,将分数意义以图的形式呈现,做到以形论数,在通过对图的理解抽象出问题实质就是求一个数的几倍(几分之几)是多少,运用类比的方法得出求6的2倍是多少和求6的1/2是多少都用乘法,进而列出算式,完成以数表形,使学生理解求一个数的几分之几是多少用乘法的道理。

  优点:在这样的教学方式下,大部分学生都能进行分数乘法的计算。

《分数乘法》教学反思5

  上一轮教分数乘法已经是六年前的事了,那时用的教材是人教版的,而北师大版的教材还是第一次教到这一内容,因此集体备课时与同事们进行了深入的探讨。

  分数乘法如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。

  一、充分利用学生已有的'知识水平与生活经验,实现新知识的迁移。

  在教学分数和整数相乘时,根据学生的已有的知识基础,导学稿上设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练5×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。

  二、努力结合现实的问题情境,引导学生理解分数乘法的意义。

  练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。

  总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

《分数乘法》教学反思6

  这节课我首先是用口算练习出示10道分数乘法的习题。和一步的分数乘法列式计算,为新课做铺垫。用谈话的方式导入新课。

  在出示例题,让学生找出已知条件和要解决的问题,并用图表示数量关系,在此基础上指导学生画线段图,逐步引导问题的已知条件在线段上如何分析运用。最后解答这道题。接下来是完成17页的做一做。要求找出单位“1”并画出线段图。最后做了几组小练习,学生总结本节课的`收获。这节课上下来之后我发现学生已经具备了一定的观察能力,能够对生活的问题进行简单的分析。但有部分学生分不清把谁看做了单位“1”而且刚学画线段图,很多同学不适应,不会画。还有的同学前面的计算掌握的不好,应加强练习,对于单位“1”的问题应找出大量的题来练习找单位“1”。这个必须掌握,后面全要通过单位“1”来确定是乘法还是除法。

  所以必须砸实!线段图可以经过一段时间的适应应该可以解决。

《分数乘法》教学反思7

  例2教学稍复杂的求一个数的几分之几是多少的问题。是在例1理解和掌握了解决求一个数的几分之几是多少的问题的思路与方法的基础上学习的。本节教学内容是运用分数乘法的意义及计算解决实际问题。

  因为这类问题的数量关系比较特殊,而用线段图可以比较清楚的表示出数量之间的关系。因此教学中充分运用这一工具,帮助学生理解题意,分析数量关系。从会看线段图入手,逐步学会画出线段图分析数量关系。

  教学中要抓住关键的句子,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几,再根据分数乘法的意义解答。从而帮助学生理解和掌握解决这类问题的基本思路,同时为后面用分数除法解决问题奠定基础。

  在备课过程中,重点抓住了整体与部分的比较关系,即知道了一个部分量是总量的几分之几,求另一个部分量的问题,还着重讲解解题的两种方法。从而在教学过程中思路清晰,教学重点突出。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:

  ⑴让学生用画图的方式强化理解求一个分数的几分之几用乘法计算.

  ⑵强化分率与数量的一一对应关系.并根据关键句说出数量关

  系。

  ⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的`几分之几的不同.

  对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

  教学中也存在一些不足之处:

  1、整节课的设计都是以让学生自己动手画图辅助,然后根据线段图找到解题方法,整个过程都是以学生为主自己动手探究的过程。但因为自己没有放手给学生,导致这个过程还是教师讲多,学生练少。

  2、在教学过程中,时间把握的不是很好,让学生画图时间过长,练习过程给的时间太少,达不到锻炼的效果。在这一方面,以后要多加注意调动学生的积极性和参与性。

  3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练

《分数乘法》教学反思8

  分数乘法应用题涉及到了单位“1”的判断,而单位“1”的正确判断与较复杂的分数乘法应用题的解答息息相关。学生在接触到两种结构分数应用题,很容易把单位“1”搞混淆,出错也是经常的事,在突破这个难点的问题上,我采用的方法是统一两种结构的分数应用题,教会学生找单位“1”,利用画线图和列数量关系的手段去解决问题,取得了不错的效果。下面具体谈谈是如何突破难点,有效的将两种结构的分数应用题统一起来的。

  首先,“求一个数的几分之几是多少”这种结构往往比较简单,从学生的练习来看,学生掌握比较好,班上有大部分学生都能在没有教师的指导下完成,但少部分同学面对应用题这种形式,具有胆怯心理,所以我从分数乘分数的意义入手,在新课的复习引入的环节让全班学生完成相应的'文字题,学生容易入境,然后放开手让学生以小组形式展开对应用题的探究,并让完成较好的学生说说自己是怎样想的,全班共同交流,共同得出单位“1”,以及分数所表示的是“倍数关系”,并且结合线段图的方式,引导这个分数所对应的量,通过比、画、找的方式让学生自主发现这种类型的应用题和分数乘分数所表达的意义一样,另配合相应的练习,帮助学困生较好地掌握该类型。

  其次,在解决“比一个数多(少)几分之几”这种结构问题时,我选择的方法是通过判断句子“比一个数多(少)几分之几”中多或少了谁的几分之几?这个句子从语文的角度来看,其实它是一个省略句,省略的正是多或少了“一个数”的几分之几,这里所指的“一个数”其实就是前面所提到的“一个数”,如果在这样一个短句中出些两个“一个数”就会重复啰嗦,通过这样的讲解,学生很容易找到单位“1”,从而这种结构和第一种结构很好地结合在一起,再通过画线段及列数量关系的方法,分析对应量及所求量的关系,学生比较轻松的掌握此种类型,从反馈的结果来看,学生在判断单位“1”不容易混淆,这种讲解的方法的效果比较好。

《分数乘法》教学反思9

  在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。

  本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:

  分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。

  分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。

  分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则

  从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。

  在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。

  分数乘法(二)

  今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。

  从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。

  分数乘法(三)

  今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。

  在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个

  数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:

  一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

  二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的.计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。

  三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。

  可以说整体教学的效果很好。

  通过今天的课我有了一下的认知:

  1数形结合的思想在本单元教学中的渗透和其作用。

  由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法(一)和分数乘法

  (二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

  数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

  2对学生探索过程的理解。

  在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

  在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

  单元小结

  第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:

  1在新课程背景,我们还要不要进行数学训练。当前无论是创优课竞赛、各级的研究课,还是论坛、博客,大家都在热衷的讨论一些教材中的新增内容,或是探究、合作的教学方法,大家似乎都不很在意数学训练,有的教师甚至一提到

  “训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。

  2在新课程背景下,我们需要什么样的数学训练。

  数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。

  (1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。

  (2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。

  (3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。

  3新课程背景下,数学训练的地形式

  数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。

  根据以上的思考自己在这三节课的教学是这样安排的:

  第一节:

  1通过计算训练整合分数乘法法则。

  2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。

  3单位转化,初步应用分数乘法意义解决实际问题。

  第二节:

  1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。

  2集体交流,剖析解题的思路。

  3专项训练,理解分数条件(图形表征、语言叙述)。

  4巩固练习,渗透对应思想

  

《分数乘法》教学反思10

  在教学了分数乘法的基础上又学习了分数加减法混合运算的计算题,以往学生又有非常丰富的整数、小数的简便计算的经验,我原以为这部分知识很简单。没有想到,错的人还真不少。我真佩服学生们的“创造能力”。问题主要有以下三种:一是乘法和加减法计算方法混淆,不少学生做加法时分母加分母,分子加分子,而在我强调之后又出现个别的学生乘法计算时分子和分子进行约分的笑话。二是不能灵活运用运算定律来使计算简便,特别是分数乘法分配律的相关计算,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数更是一塌糊涂啦!三是一般计算题和简便计算题混淆,将不能用简便方法的也给你发明个“简便”方法出来,随意添加括号的现象很普遍!

  针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,追溯求本,理解各自的意义;二联系分数乘法和加减法各自的.计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。

《分数乘法》教学反思11

  例2的教学是重点帮助学生看出单位“1”的量,找到单位“1”,理解男运动员占九分之五的含义,那女运动员占几分之几?那单位“1”的几分之几是多少怎么做呢?对于这个例题学生都掌握的很好,也发现了这种题型的特点,单位“1”都是两个量组成的已知单位“1”的数量和其中一个量的关系求另一个数量,这种题型的通用方法就是可以先求另一个量的关系,然后用求一个数的几分之几是多少用乘法来计算。通过课后的反馈学生都完成的不错。

  本节课主要内容是对例3的教学,让学生重点理解“今年的班级数比去年多六分之一”的含义,弄清楚把哪个量看做单位“1”去年班级数的六分之一是什么?去年的`班级数乘六分之一是什么?有的学生对于这个确实不是很理解,这个例题是两个量之间的关系,其中一个量是单位“1”所以画线段图时要画两条。

  学生对于线段图的掌握还是可以的,如果没有线段图的时候可能就是出现理解的偏差,分析原因可能是在第二单元求一个数的几分之几是多少没有理解。所以课后我经常画线段图来帮助学生女理解,也教会学生用线段图帮助他们分析题中的数量关系。

《分数乘法》教学反思12

  本节课教学的就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的`分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后我的感受是:

  1、让学生回忆一下一个数乘分数的意义。对分数的意义进一步加深。

  2求一个数的几分之几是多少的文字题,这为学习相应的分数应用题做准备

  3、在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平

  4、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。

  5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。

《分数乘法》教学反思13

  分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义。学好分数应用题,将使学生开阔视野,拓宽思路,既能熟悉和掌握各种类型分数应用题的内容、特点、数量关系和解答方法,也能提高解答各类复杂分数应用题的应变能力。在实际的教学中,我觉得要学会分数应用题必须扎实地打好两个基矗

  一、分数乘法的意义传统的分数应用题的教法,在找标准量时,让学生死记“是、占、比、相当于”后的量来找单位“1”。题目若求比较量(即所谓“知一求几”),就用乘法来计算;题目若求标准量(即所谓“知几求一”),就用除法来解答。这种机械模仿的呆板教法,不利于学生从根本上理解算理,会严重束缚学生创造性思维的发展,要克服这种弊端,就要加强分数乘法意义的教学。教学分数乘法的意义时,要注意沟通与整数乘法意义的'联系。现行教材100×3就是求100的3倍,100×1.5就是求100的1.5倍,引出100×个数的几倍,实质是一样的。这样使学生感到新知不新,增强学习的兴趣。

  二、加强分数乘、除法应用题的对比性练习分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。因此,在教学时要加强对比,使学生在对比中求新、求异、求同、求实;要灵活多变,使学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。通过对比,加深理解。如教学例题时要用直观线段图对比。通过多变沟通联系。如教完分数应用题后,可以组织学生作这样的练习:“甲仓库存粮120吨,_________。乙仓库存粮多少吨?”要求学生分别根据以下各条件列式解答。

  数乘法应用题融于一题多变之中。在教学实践中采用上述方法教学分数乘、除法的意义,不仅能使学生加深对概念的理解,而且能使学生正确地运用概念分析解答分数乘、除法应用题。

《分数乘法》教学反思14

  《分数乘分数》的教学重点是巩固理解分数乘法的好处,探索分数乘分数的计算算理与法则。

  在教学实践中继续采用“数形结合”的数学方法,帮忙学生达成以上两个教学目标。对于这天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法好处的理解还不够深刻,因此在整个的教学过程分为三个层次:

  一、引导学生透过用图形表示分数的好处,再用算式表示图形,深化“求一个数的`几分之几是多少”的分数乘法好处,感知分数乘分数的计算过程。

  二、以1/5*1/4为例,让学生先解释算式的好处,然后用图形表示这个好处,最后再根据图形表示出算式的计算过程,这样做的目的是透过“以形论数”和“以数表形”的过程让学生巩固分数乘法的好处,体会分数乘分数的计算过程。

  三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。能够说整体教学的效果还好。

  透过这天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的好处和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得个性重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮忙学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮忙学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮忙学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

  数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

《分数乘法》教学反思15

  《分数乘法(三)》的重点是理解分数乘法的意义,难点是推导分数乘分数的计算法则。分数乘分数的意义是分数乘整数意义的扩展,在学生学习了分数乘整数和求一个数的几分之几是多少后,教材先以古代名题引入,引导学生初步感受。接着开展“折一折”的活动,借助图形语言,体会“分数乘分数”的意义,初步探索分数乘分数的算法和算理。教学本节课后,我觉得以下几个方面值得反思:

  1.关注学生的学习状态。教学中让学生真正主动地投入地参与到探究活动中,既兼顾知识本身的特点,有兼顾学生的认知特点和学生的已有水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,让学生经历折纸操作等过程,使学生发现并掌握分数乘分数的`计算法则。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情高涨,兴趣浓厚,都想通过自己的努力,寻找发现。

  2.关注学生的学习过程。让学生亲自经历学习过程:即让学生在动手操作——探究算法——举例验证——交流评价——归纳法则等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去感悟、去经历、去体验、去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。

  3.关注学生的学习方法。在引导学生经过不断地思考去获得规律的过程中,着眼点不能只在规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由特殊去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。这其间渗透了科学的学习方法和实事求是的科学精神。

  另外要注意避免过于繁琐的计算,不过适量的练习还是必要的,通过练习逐步提高学生的计算技能。

【《分数乘法》教学反思】相关文章:

分数乘法教学反思04-05

分数的乘法教学反思01-31

分数乘法教学反思01-31

分数乘法3教学反思12-31

数学分数乘法教学反思12-31

分数的乘法教学反思15篇01-31

分数乘法教学反思15篇01-31

分数乘法教学反思(15篇)02-05

分数乘法教学反思精选15篇02-18