植树问题教学反思(15篇)
身为一名刚到岗的教师,课堂教学是重要的任务之一,写教学反思能总结教学过程中的很多讲课技巧,那么写教学反思需要注意哪些问题呢?以下是小编收集整理的植树问题教学反思,仅供参考,希望能够帮助到大家。
植树问题教学反思1
“数学广角”单元,主要是要向学生渗透一些重要的数学思想方法,本册主要是渗透有关植树的问题的一些数学思想方法。通过现实生活中一些常见的实际问题,让学生发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的实际问题。 解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题的关键是找出隐藏的总数和间隔数之间的关系问题。
一、从基本题型入手,适当变式。
虽说数学广角这一单元主要通过简单的事例渗透一些重要的数学思想方法,或者介绍一些比较著名的数学问题,让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的.策略,培养学生解决实际问题的实践经验和能力。最重要的目的是让学生通过接触这些重要的的数学思想和方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。但这部分知识对于基础教差的孩子来说,还是一个难点。这部份孩子很难从基础的题型中提炼出数学模型。根据这部分孩子的认知程度,他们能理解基本题型就已经是很不错了。题型一经变式,就没办法理解了。
这单元的知识,要因材施教,设置多个教学阶梯,做到让差生吃饱,让优生吃好。从简单的生活事例入手,让所有学生初步体会解决植树问题的思想方法和它解决实际问题的应用。这是最基本的教学目标,教学时要让每个孩子不管通过什么方法,都必须弄懂的基础。最后才对一些题型进行变式,但变式的题型不要求所有孩子都能明白。
植树问题教学反思2
“植树问题”原是人教版新课程标准实验教材四年级下册“数学广角”的内容。但这次改版为五年级上册内容。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学内容的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。激发学生探究的欲望。设计的例题是一个开放性的题目,提供给学生的是现实的,是有意义的,挑战性的。开放性的设计,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动。让学生比较系统地建立植树问题的三种情况,即两端都种;两端都不种;只种一端。
1、让学生主动学习。
学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,请学生设计一条路上植树的情况。根据学生反馈上来的情况进行分类,在教师的.引导中让学生探究,设境激趣,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。
2、从生活中找答案,找灵感。
“数学来源于生活,而又应该为生活服务。”在学生对植树问题的几种不同种法的基础上,我开放课堂时空,让学生从排队做操、插彩旗,让学生认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,引导学生得出可以先从短一点的研究起,发现规律后在来研究复杂的问题,使学生体验“复杂问题简单化”的解题过程。
一堂课上下来,觉得还是对学生扶的很牢,没有放开,对学生的学习起点没有充分掌握,以至课堂中还有很多不足,期待日后调整改进。
植树问题教学反思3
画图理解加强训练:
植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽棵树=间隔数+1,一端栽一端不栽棵树=间隔数,两端都不栽棵树=间隔数-1。等学生找到规律后再解决这类问题就简单多了。
数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理。
走近生活把握细节:
数学来源于生活,而又服务于生活。在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。
把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的.区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
植树问题教学反思4
本节课的教学,我力图在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时建立数学模型,解决实际问题。反思整个教学过程,我认为这节课有两点做得比较好:
一、呈现开放的数学材料。
在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改大数据,将路的长度变成20xx米。如此修改的意图是,让学生在开放的情境中引起冲突:数据这么大,这要画到什么时候啊!从而引导学生想新的解题策略:可以先把数变的小一些,研究规律,再来解决数据大的'问题。自然引出在20米长的小路一边每隔10米种一棵树,你觉得可能种几棵?在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度,提炼出植树问题的三种种植方案。
二、注重学生的自主探索。
教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到每隔5米种一棵,5棵树,4个间隔;每隔4米种一棵,6棵树,5个间隔;每隔2米种一棵,11棵树,10个间隔;……,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比间隔数多1。这样就让学生经历这个过程并从中学习一些解决问题的方法和策略。并且我还注重了对数形结合意识的渗透。
也有两点不足之处:
1、学生汇报时,我处理的比较仓促,没有做很好的引导,如果能把学生的发现一一板书,可能更有说服力。如果我继续追问:如果不是20米长的小路,是任意长的小路一边两端种树,棵数还会等于间隔数+1吗?从而能更好的验证自己发现的规律的正确性。
2、整堂课师生之间的问答比较单一,在反馈练习时,可以让学生提提问,多一些师生之间的交流,使课堂气氛更活跃。
植树问题教学反思5
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的`知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
植树问题教学反思6
“植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。
本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
第一、预习安排得比较巧妙。从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。
第二、教学环节设计由浅入深。在学习完例题后的检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的知识是否掌握,另一方面检测学生是否认真审题。另外设计了一个求棵树的`变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。充分体现了数学的由浅入深、由易到难的思想。
再次,学生学习的积极性较高。本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。
这节课虽不错,但问题也存在着。
一、学生在展示时语言表达不够完整。在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步......,一步一步来说。
二、在拓展训练中引导不到位。求路长,实际还是先求“间隔数”,没让学生弄明白。
三、总结规律时本人在复述时叙述不完整,没有强调“两端都栽”这个前提条件。这也说明,本人在语言叙述中也存在问题,也折射出本人数学思维的不严密,也导致学生的课堂语言出现问题。这也是本人应该深思的,更应该改进的。
植树问题教学反思7
我在上完这节课后有以下思考:
1、在探究活动中培养学生学习兴趣
植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。因此我设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。而且,可以在这种与平常不一样的活动中,获得真实感知和学习经验,更有利于培养学生学习数学的兴趣。
2、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。整节课,每一环节我都设计让学生动手操作,合作交流。学生在不断的'操作和交流中,经历了观察、发现和感受的全过程;学到了解决问题的方法,并获得了更深层次的情感体验。
本节课上的非常顺利,效果也不错。但总觉得有些程序化,在引导学生思考和操作的过程中,对学生规定的有些死。如果在探究两种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
植树问题教学反思8
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的.铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题教学反思9
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的.方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
植树问题教学反思10
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的.情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的方法
3)学生汇报
4)引导总结:
两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
植树问题教学反思11
本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的`来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
一、动手操作、合作交流、探究规律:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。
二、练习的设计独特、新颖、有梯度:
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。
由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
三、充分体现学生的主体作用及教师的主导作用:
本节课,我通过引导学生动手操作(模拟植树)——交流讨论(植树方案)——得出结论(三种植树问题的解决方法)——应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
植树问题教学反思12
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的.数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
植树问题教学反思13
《植树问题》是人教版四年级下册“数学广角”的内容,教材其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的《植树问题》选自人教版四年级下册《数学广角》这一单元的第一课时。教材共安排了三个例题,两端都种,两端都不种,封闭图形的植树问题。本节课我主要研究的是三种情况都种的植树问题。经过深思熟虑,我在课堂教学实施中着力想解决好以下问题:
如何让学生经历一个“将复杂问题转化为一个简单的问题来研究,再运用所发现的规律来解决复杂的问题”的过程?
在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中学生直接感知棵数与间隔数的关系,创设了问题情境使学生了解了间距在生活中的应用;在突破本课难点部分我通过一棵一棵的种树的课件演示使学生产生了对植树问题中这个比较复杂的问题是否有更好的解决问题的办法?“一棵一棵的种太麻烦了….”学生产生了这样的思想,确定了“转化的需要”,接下来,实施策略的产生与方法可行性验证;学生给出了例题不同的答案,此处留空白,让学生通过学具的摆、数、画等方法探究出棵数与间隔数之间存在:棵数=间隔数+1,反过来验证例题哪个答案是正确的,在这样的.过程中,学生通过不断的观察、思考、操作完成了数学思想的建模。但在做题的过程中,学生还是知其然不知其所以然,“为什么植树问题屡教不会?”我进行以下反思:
首先,我只是在奥数课上系统讲解了植树问题,在我们的数学课本中没有作为一个知识点出现,只是出现在练习题目中,所以我们没有在课堂上拿出时间进行系统的讲解。
其次,无法将脑海中的数学模型与实际的植树问题联系起来。虽然记住了“五根手指四个空”但是却无法与实际的安装路灯、插彩旗以及种树等问题联系起来。他们不知道手指的间隔与种树、安灯和插彩旗有什么关系。
再次,当我们在讲解植树问题的时候,我们往往是这样讲解的:“同学们,600米的小路,每隔5米一棵树,咱们现在求间隔?”学生很容易列式:600÷5.然后我们问这样结束了吗?学生说:“没有,还要加1”。只是在一问一答的模式中教学,从来没有让学生自己通过画一画的方式来种小树。如果在讲解的时候。结合手指,然后让学生结合实际来画一画,数一数到底间隔数和数学的棵树之间的关系,自己动手发现的规律远远比我们告诉的记得牢的多。
有了这次植树问题的教训,以后再遇到像“植树问题”这样的典型问题时,我一定会在建立模型的基础上然学生通过充分的动手体验去获得知识,这样远比老师告诉他的效果好!没有一堂课是完美的,我的这节课依然如此,但是我相信,只要不放弃努力,不放弃前进的脚步,我们会继续不断的探索下去。
植树问题教学反思14
《植树问题》是四年级数学广角的内容,对于孩子们来说属于拓展提升类知识,对于三年级孩子来说理解起来更会有困难。下面就几方面谈一谈我的设计意图:
1、课堂中主要渗透了一一对应、化繁为简以及数形结合的数学思想,单纯的套用数量关系学习的知识则失去了它的持久性,要让学生在活动中深化数量关系,设计了数一数、画一画教学活动,这些活动都能帮助学生积累活动经验。
2、一一对应思想的渗透。在一一对应的思想上的,让学生体会并说出谁和谁为一组就是一一对应的体现,可以为学生接下来理解为什么多1、少1或相等打下良好的基础。
3、在追问中感知数量关系。数量关系的生成要经历一定的数学活动经验,让学生摆一摆、数一数只能观察比较出两种物体的个数的大小,继续追问:为什么+1,为什么—1?这样的追问是深化数量关系的.有效前提。
4、重视不同情况的联系与区别。无论是植树问题还是间隔排列的两种物体,他们都有多种情况,而每一种情况都不是孤立存在的,规律之间的练习可以帮助我们教学过程中有效进行延展,而他们之间的区别则可以帮助学生加深每种情况本质的理解。
5、体现应用意识。数学知识来源于生活也应用于生活,对于植树问题的理解要拓展到平常生活中,这样能引导学生运用规律或者获得的策略以及感悟的数学思想来解决与植树问题有着共同数学知识结构的实际问题。
本节课的不足以及应改进的地方:
1、把100米简单化到20米,仍然不够简单,对学生的理解题意造成了一定的困难。如果改成总长5米,间隔1米,会更好理解。
2、讲解三类情况时,应以“只在一端”这种简单情况为例,重点讲解,降低学生学习难度。
3、教态不够自然,语言表情亲和力不够,在平时教学中应加强锻炼,注意培养。
每一次讲课对自己来说都是一次锻炼,都是一次进步的机会。备课、讲课、反思,每一步都需要用心去思考,思考的过程就是进步的过程,相信经过这样的一次次历练,自己会做的更好。
植树问题教学反思15
《植树问题》内容包括两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。在解决植树问题的过程中,要向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。
一、自主探索,培养学生数学思维能力。课前创设情境让学生欣赏美丽的风景,引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,不规定间距,同时改小数据,将长度改成20米。让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。通过“以小见大”数形结合来找规律加以验证,然后以例题
展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。
二、拓展应用,反映数学与生活的密切联系。“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的'关系就不同。在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等,再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活。
三、数形结合,培养学生借助图形解决问题的意识。我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起左手,看指头有五个,间隔就是四个,明白植树问题的道理与此相似,再举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。
本节课的不足之处:一是学生没有完全放开,思维还不够活跃;二是对课堂的生成问题处理还不够灵活,不能进行很好的利用。
【植树问题教学反思】相关文章:
《植树问题》教学反思03-01
植树问题教学反思01-08
数学《植树问题》教学反思04-21
植树问题教学反思(精选13篇)12-12
《植树问题》教学反思15篇03-08
《植树问题》教学反思13篇03-02
《植树问题》教学反思(15篇)04-06
《植树问题》教学反思(精选15篇)04-06
植树问题教学反思15篇02-09