现在位置:范文先生网>心得体会>教学反思>《一次函数》教学反思

《一次函数》教学反思

时间:2024-06-07 15:17:55 教学反思 我要投稿

《一次函数》教学反思

  作为一位刚到岗的人民教师,课堂教学是我们的任务之一,教学反思能很好的记录下我们的课堂经验,教学反思应该怎么写呢?以下是小编整理的《一次函数》教学反思,欢迎阅读与收藏。

《一次函数》教学反思

《一次函数》教学反思1

  今天上完一次函数的图像这节课,颇有感慨。一次函数的图像在本章起着很重要的作用,因为只有掌握了函数图象的画法,学生才能够画出函数图像,从而从图像中学习一次函数的性质,也为后一节的一次函数与二元一次方程,一次函数与一次不等式打下基础.

  我在设计本节课时,仔细研究了新课标,认为本节的重点是:

  1、通过列表、描点、连线教会学生会画一次函数的图像,并与学生一起总结一次函数的图像,画一次函数图像需要几个点,一次函数的图像有什么特征;

  2、让学生理解图像上的点的坐标与函数表达式之间的关系。教学环节设计分为三步:1、通过复习再次理解函数图像的.概念,并通过举例让学生了解,让学生明确函数图像的重要作用。2、通过实例向学生展示如何画一次函数图像,并从中总结出画函数图像的一般步骤.先由学生归纳,后由老师总结出画函数的三个步骤:1、列表,2、描点,3、连线。

  3,让学生练习如何画图,并从中发现学生可能存在的问题,作个别指导,并抽出典型问题进行讲解。

  4,通过课件一步步和学生探讨画一次函数图像的步骤。展示不同函数之间的关系。特别是平行,平移的关系,由课件很直观的展示出来。有助于学生的理解。

  在教学过程中总会有这有那的一些不尽人意的地方,有时候是语言表达不当或不严密。例如这节课我在组织教学时,就只给学生讲了一次函数的k相同时,函数图像是平行关系,但是我没有引导学生发现怎样得到这些互相平行的直线。我在讲课中没组织好课堂,学生有些沉闷不与老师配合,有极少同学不愿意动手画函数图像,也有一些同学认为太简单,不愿画。如何使语言更加生动从而吸引学生的注意力是以后备课需要仔细研究、推敲的地方。此外,还是没能改掉不好的习惯,我由于讲得太多,课堂练习较少,同学们自主学习的时间还是太少,以后尽可能少讲,由学生自已完成知识的建构。

《一次函数》教学反思2

  教学中,我提倡学生做一道题收获一道题:不仅要会将给定的题目分析得解,还要学会总结反思解题规律、方法思路、技巧、数学思想方法等,最重要的是要充分发挥成题的作用,学会对一道成题从不同角度进行变式,在变化中分析、思考,从而达到将知识学活、学会学习的目的。这里以“一次函数基本知识”的复习课为例,谈谈如何用一道题目的变式囊括所有知识点的复习.

  例题:已知函数y=(3-k)x-2k+18是一次函数,求k的取值范围.

  设计意图:考查一次函数的定义:y=kx+b中k≠0.

  一变:k为何值时,一次函数y=(3-k)x-2k+18的图象经过原点;

  设计意图:考查点与图象和点的坐标与函数解析式之间的对应关系:

  图象过原点等价于x=0,y=0满足y=(3-k)x-2k+18.

  二变:k为何值时,一次函数y=(3-k)x-2k+18的图象与y轴的交点在x轴的上方.

  设计意图:考查一次函数的图象与x轴、y轴的交点问题,并能将文字语言翻译成数学语言:与y轴的交点在x轴的上方表示交点的纵坐标,即-2k+18(一般式中的b)大于0.

  三变:k为何值时,一次函数y=(3-k)x-2k+18y随x的增大而减小(或:(a,b)(m,n)均在一次函数y=(3-k)x-2k+18图象上,且an,求k的取值范围).

  设计意图:考查一次函数的性质.

  四变:k为何值时,一次函数y=(3-k)x-2k+18图象经过一、二、四象限?

  设计意图:学习一次函数的最重要方法是数形结合.结合图象,将问题转化为解关于k的不等式组.

  五变:k为何值时,一次函数y=(3-k)x-2k+18图象平行于直线y=-x;

  设计意图:考查决定两条直线位置关系的因素,这里只涉及简单的情形:两条直线平行等价于3-k=-1(即一般式中的k相等).

  六变:直线y1=(3-k)x-2k+18与直线y2=2x+12交于点P(-1,a).

  (1)求k的值;

  (2)x为何值时,y1〉y2;

  (3)求直线y=(3-k)x-2k+18、直线y=2x+12与x轴围成的三角形的面积.

  设计意图:(1)交点的意义:点P(-1,a)同时满足y=(3-k)x-2k+18与直线=2x+12,从而求得a,k;(2)解决第二问时有多种方法:解不等式,数形结合;(3)第三问需要借助图象明确所求的.图形,弄清点的坐标与线段长的关系(这是学生的易错点,补充强化练习:如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,求k的值).

  “一题多变”教学收获反思:

  1、在本节课中,通过对一次函数y=(3-k)x-2k+18的多角度变式,将转化的思想、数形结合的思想含儿不露地加以应用,学生的思维、能力均得以发展。

《一次函数》教学反思3

  今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的部分x的取值范围。

  在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的`训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的教学是本课难点,每个老师在课堂上用各种不同的方法进行分析,协助学生理解。

  陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。

《一次函数》教学反思4

  本节课的复习目标是:理解一次函数的关系式,掌握一次函数的图象及有关性质;会用待定系数法求一次函数关系式;能运用一次函数的相关知识解决简单的数学实际问题,培养学生数形结合的能力。教学重难点为一次函数关系式及图象性质的综合运用。对于本节内容我将教学案分为三部分:一.课前复习;二.例题精讲;三.课堂作业。

  有效的课前复习它有利于督促学生及时复习回顾本节内容,有利于教师了解学生掌握知识的情况,所以课前我先将学生的复习作业及时批阅,课上将学生作业中失误率较高的题目及时评讲,查漏补缺;课上选取典型的例题,其中考查的知识点有已知点求直线的关系式,有已知直线求点,一次函数的'增减性、一次函数与方程、与不等式之间的关系,有利用数型结合的思想解题,有一次函数与坐标轴围成的图形的面积问题,也有一次函数的实际应用等等,在例题的选取上基本已将大多数知识点容纳其中,课上在学生的主动参与下,一起完成了例题的讲解,最后还剩下不到5分钟的时间一起完成课堂检测。

  本节课中始终以一次函数的图象与性质为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的进行复习讲解,本课采用“教学案”的形式,实现了课下与课上相结合,学案与教案相结合,学生自主学习与教师讲解诱导相结合,让学生自主、探究、主动地学习。把思维空间留给学生,把学习主动权还给学生,把自主时间还给学生,同时 “教学案” 的设计注重了夯实基础,复习实行“低起点、多归纳、快反馈”的策略,注重激发全体学生学习数学的自信心,教学中也注重学生解题的准确性及表达的规范性。当然本节课也有很多有待改进的地方,比如课上老师的总结有时不及时,在讲解直线上点P使得PM+PN取得最小值时总结不够,应该将题目中的共性找出来分析,找出题目中的基本量进行分析,有利于学生遇到变式题时不至于无处下手。

  总之,在本节课的教学设计时,我在明确复习课的目的的任务下,以培养学生能力,促进学生发展为指导思想,遵循复习课原则中的系统性原则和主体性原则,以学生的“学”为出发点,将“自主探究、合作交流”的学习方式贯穿于课的始终,并将评价与教师的教和学生的学有机的融为一体。我相信,在新程标准的指引下,我们的数学课堂将会越来越精彩。

《一次函数》教学反思5

  本节课是九年级学生中考首轮复习中对一次函数的一节复习课,通过对一次函数基础知识的疏理,典型例题的讲解、变式训练的巩固、练习小结的归纳提炼及课后作业的拓展提升这一条主线,对一次函数的图形、性质、应用进行复习,让学生对一次函数有一个系统、直观的复习思路。

  一、本节课的主要教学思路:

  通过让学生自主完成表格的形式引导学生梳理一次函数的相关定义、图象、性质等基础知识,使学生初步建立一次函数的知识框架;再通过以题带知识点的方式针对重点知识的熟练运用能力进行夯实训练;通过变式练习解决学生在解题中出现的易错点;通过课堂小结培养学生归纳知识点、提炼方法的意识和能力;利用给对学生布置的课后作业训练学生运用课堂所学的知识、方法独立思考、解决问题的应用能力,并对学生的复习效果进行查漏补缺。

  二、本节课教学过程中比较突出的.方面:

  1、始终以一次函数的图象与性质及应用为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的进行复习讲解和训练。例如:在复习用待定系数法确定一次函数解析式时,教师首先明确针“确定一次函数的解析式”的实质就是确定y=kx+b中的常数k、b的值;其次是引出待定系数法并指明待定系数法的操作步骤;同时强调在运用和计算中如何避免可能出现的易错点及检验的方法。这样做到对一次函数中的易错点进行提前干预。

  2、在本节课的设计中既注重夯实学生的基础知识和解决一次函数中常见问题所用的通性通法,也注意以旧引新,达到温故而知新的目的,例如:在复习一次函数y=kx+b的图象所经过的象限时,通过知识点的回顾和具体题目的训练,巩固了学生对该知识点的掌握,在此基础上让学生讨论k、b的符号与一次函数图象所过象限之间的关系,归纳总结如何根据k、b的符号准确、快速的确定图象所经过的象限及如何根据图象所过的象限确定k、b的符号的方法,使学生对一次函数的图象与性质有更深入的认识,并逐步学会总结知识之间的联系,提炼规律,概括、灵活掌握所学知识。

  3、本节复习课实行“低起点、细指导、多训练、精点播、快反馈、勤归纳”的策略,对基本练习题、例题、变式练习题的设计注意题目之间的层次和坡度,同时针对自己所带班级中一些学生数学基础较差且缺乏学习积极性的现状,在上课时多叫学生回答问题,多安排学生间相互讨论,注重激发全体学生学习数学的自信心和兴趣,加强对学生解题的准确性及表达的规范性上加以指导。

  4、本节课的教学方法主要有讲练结合,小组讨论,合作归纳等,教学中让学生积极主动参与知识的形成过程,主要渗透转化的数学思想方法、数形结合的思想方法等,有意识地把思维空间留给学生,把学习主动权还给学生,使无味的复习课变得活跃一些,增强了学习气氛。例如:在进行知识点梳理时,以表格为一次函数知识体系的载体呈现,通过让学生完成表格促进学生自己主动联想回顾,进而建立一次函数的知识框架,变被动为主动学习;在完成表格中的“图象及其性质”环节中,让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。

  三、本节课中有待改进的地方:

  1、在一次函数应用的例题及练习题的讲解训练中,发现大多数学生对于简单题型能自己解答,而一部分学生对综合性题目或文字较长、条件较多的题目有些无从下手,反应出思维不灵活,理论与实际相联系的能力不足。因此在课前课前对各个环节、题型及不同层次的学生作充分、细致地研究。

  2、由于学生学习一次函数到中考第一轮复习间隔的时间较长,学生对所学知识回生,教师对学生存在的问题和易错点预设不足,课堂时间显得比较紧张,在一次函数应用的复习时比较仓促。因此在以后复习课的教学中应综合考虑学生的知识、能力、易错点、所复习知识的时间等各方面情况,做好预设及准备工作。

  总之,在今后的教学实践中还要不断反思自己教学中的得失,吸取教训,完善不足,不断积累经验,使不同学生得到不同发展。

《一次函数》教学反思6

  教材分析

  1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

  2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

  学情分析

  1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

  2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的.函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

  3、学生认知障碍点:根据问题信息写出一次函数的表达式。

  教学目标

  1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

  2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

  3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

  教学重点和难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  教学过程

《一次函数》教学反思7

  一、结合实际,引入概念

  正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。

  本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数 叫做正比例函数。在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。这里大部分学生能够从形式上正确判断,即达到了“了解”目的。

  二、直观教学,激发主体探索。

  (1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。

  (2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。

  (3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的k值,随着b值的不同,函数图象上移或下移。学生在观看动画的过程中理解函数图象平移的规律。

  三、修正教学设计,改善教学。

  【改一】环节一、正比例函数、一次函数的概念

  教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。

  【改二】环节二、一次函数的图象

  原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。

  原设计中,对于增减性的学习。学生先是通过描点法和两点法画了4个一次函数图象,这里学生用了大量的时间来画图,而对于增减性的归纳是通过观看教师所展示的动画得来的,学生自主探索得出性质的时间太少了。如果再加几个一次函数图象让学生画、让学生先自主想想函数图象的特点,可能对于性质的认识会加深。但这样又不够时间来学习平移的有关知识。建议整合知识的`时候,本节课先不学习图象的平移。

  【改三】环节四、归纳总结

  本环节是对一次函数图象关于k、b的性质进行总结,由于前三个环节已经占用了30多分钟了,所以这个环节以教师点评为主,引导性的提问,学生来回答并对完成上图的填空。速度过快,点评不够深入。没能顾及到中下层次的学生。建议留出让学生自主归纳总结,加深理解,然后再由教师点评。

  【改四】环节五、巩固练习

  由于本节课整合的知识点较多,而且是平行班教学,新课的学习已经用了35分钟,仅仅剩下10分钟给学生做巩固练习,显得太仓促。建议减少整合的知识点,留够时间给学生做练习。

  【改五】课堂秩序需要加强,促进有效教学

  有一些学生自顾自的一直在做学习卷,而不管教师的点评与讲解,需要在平常的课堂教学中强调这个问题,强化学生的听课意识。那些一直做题的学生往往是一知半解,不听教师的讲解与点评有碍对知识的全面掌握。

  在影响教学有效性的因素中,良好的师生交往是很重要的。良好的教学效果取决于教师和学生双方。学习被看作是一种主动的、合作的建构过程,师生交往永远是教学的核心。所以在师生交往中,仅仅只有学生的自我先行是不够的。合作的、富有创建性的、既能体现教师权威与纪律,又能体现平等的师生交往形式才是有效的。

《一次函数》教学反思8

  根据教学目标,结合学生心理特点,以及本人的教学经验,这节课主要采用在教师引导下,学生自主发现为主的教学方法。即教师创设问题情景,激发学生思维,引导学生观察、比较、思考并分组展开讨论,使学生作为认知主体参与知识发生的全过程,体验揭示规律,发现真理的乐趣,,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用。在整个探索新知的过程中主要培养学生的合作精神。

  本节课教师要向学生说明研究函数的基本方法是由函数表达式画图象,再由图象得出性质,最后反过来由函数性质研究其图象的其他特征。为此,这节课首先从学生已经认知的正比例函数和一次函数的概念出发,得出其定义式,以及两者特殊与一般的关系。然后展示教材中和作业中出现的正比例函数和一次函数的图象,让学生感知一次函数的图象是一条直线,并让学生回忆画一次函数图像的的'方法步骤,掌握画图要领后,进而作出猜想。这样可以较好的突破难点。接着,由一次函数(正比例函数)图象的特殊形状,引导学生从图象和列表或表达式中分析:当自变量取值增大时,其函数值的变化情况;图象的分布主要由什么决定,让学生总结归纳其性质。教师要加以强调反比例函数“每个分支”的变化情况,最后教师用由浅入深的变化训练题组,使学生更完整、灵活地理解与掌握一次函数的图象及性质。

  这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用通过让学生亲自动手、动脑画图及设计若干组“问题串”的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但为了赶时间(在画函数图像环节时间有点过),学生的这一活动开展的不充分,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

《一次函数》教学反思9

  本节课是在学生已经学会从单个一次函数的图象分析获取信息,进而解决有关实际问题的基础上展开的。因此,本节课的重点应该放在怎样从两个函数图象的比较、分析中提取有用信息,弄清两者之间的联系,从而提高学生的识图能力与解决实际问题的能力。难点在于怎样抓住有用的特征去分析、比较。于是,本节课的基本思路是以学生熟悉的一次函数的图象及性质为铺垫,以学生感兴趣的现实问题作素材,以交流合作为主要形式展开学习活动。

  教学优点反思:

  1、学生对本节课的浓厚兴趣不仅来源于极具现实意义的学习素材创设现实情境如:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量v(万米3)的关系中开放性的问题所给的暇想空间、处理引例时步步追问能紧扣思维脉博、

  例1:某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系引伸的问题带来了挑战性的悬念。只有让学生在探索问题之中学会提出问题,才能最终体验到数学的抽象,形成稳定的学习兴趣。

  2、本节课充分体现了学生在自主探索与合作交流中学会学习这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

  3、本节课通过函数图象获取信息,解决实际问题,培养学生的形象思维及数学应用能力,同时培养学生良好的环保意识和热爱生活的意识及利用函数图象解决简单的实际问题通过方程与函数关系的研究,建立良好的知识联系。

  教学缺点反思:

  1、个别差生的积极性还未调动起来,还须探索出关注差生的方法来提高教学及格率。

  2、在分析一次函数表达式时,在课本上用的“数形结合”方法可另外用“待定系数法”分析;以便学生能拓展思维。

  反思二:一次函数图象的应用教学反思

  通过函数图象获取信息,解决实际问题,初步接触“数形结合”思想,培养学生的形象思维及数学应用能力;通过方程与函数关系的.研究,建立良好的知识联系;同时培养学生良好的环保意识和热爱生活的意识。成功之处在于让学生独立思考,给出解决问题的方法后,分享其他同学方法,比较后引出通过获取函数图象信息,解决实际问题即简单的“数形结合”思想。不足之处是对于方程与函数关系还欠缺练习巩固和课后作业。

  反思三:一次函数图象的应用教学反思

  数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,

  总结

  性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?

  我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。

《一次函数》教学反思10

  一、反思分析

  1、 本节课的设计由学生掌握的知识为切入点,教给学生探求知识(确定一次函数表达式)的方法,教会学生获取知识的本领,通过学生主动参与、观察、讨论交流,动手解题等探索知识的过程。

  2、由两个条件确定一些简单的一次函数表达式是本课时的重点。本节课一系列问题的设置,是想要学生通过图象、文字、表格发现条件,确定表达式,解决问题。

  3、教学设计沿着:①思考为中心;②问题为载体;③探索为主线;④能力为目标的四个环节展开,始终体现教师是课堂教学的组织者、引导者、合作者的角色,学生是教学活动的主体,课堂的主人,不仅学会了确定一次函数表达式的知识,而且学会了解决函数问题的思想方法,使学生变"学会"为"会学",乐学的新理念。

  二、激发学生主体参与学习方面的优缺点

  1、本节课力图首先解决有一个系数待定的情况,让绝大部分学生掌握,对于两个系数待定的情况,让中等偏上的学生掌握,学习能力较差的`学生慢慢体会,等教学活动三评讲之后,再跟踪练习,加上教学活动五的归纳,就可以让不同水平的学生先后得到提高。但是在教学活动中由于过多分析待定系数的情况,导致两个系数待定的实际应用题分析的不够彻底。

  2、本节课还通过解决问题方法的探索,来提高学生分析问题、解决问题的能力。原>计划通过不同的探索方式来保证学生既有自主探索又有合作交流,使得课堂探索方式多样化,学生各方面的能力得以全面提高。但在教学过程中没有的兼顾不同层面学生的学习与收获。

《一次函数》教学反思11

  一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

  先介绍函数的'图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

  练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!

  反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

  2、本节课讲到第三个性质。

  3、练习题要精而且少,难易适中。

  4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思

《一次函数》教学反思12

  学生已经学习过一次函数的图像和性质,在本节课开始之前,用一个具体的一次函数表达式带领学生回顾已学知识。

  根据函数表达式,我们可以得到函数图像与坐标轴的交点坐标,可以知道函数图像是上升还是下降,可以很快的利用k值确定y随x的变化而怎样变化。这时,抛给学生一个问题:在函数表达式未知的情况下,能不能用已知的函数图像上的点坐标或其他信息确定出这个函数的表达式?

  由此引入,给出今天所要学习的一个新方法—待定系数法,让学生阅读课本材料,和学生一起总结利用待定系数法确定一次函数表达式的步骤,简单概括为:设(一次函数或正比例函数表达式)列(方程组或方程)解(方程组或方程)答(写出函数表达式)。给出一个点坐标,可以确定正比例函数的表达式,让学生思考并分析总结确定一次函数表达式需要两个点,而确定正比例函数表达式只需要一个点。

  之后的.主要内容是练习,采用让学生上台板演,请其他学生指正错误的方法,教师要强调解题过程的规范性。之后继续练习课本习题,并总结题目类型——有直接给出点坐标的,有根据图像确定点坐标的,有根据实际问题提取有用信息的等不同的给点类型,告诉学生如何从不同的题目中得到有用的条件,然后利用待定系数法求解函数表达式。

《一次函数》教学反思13

  为达成课堂教学目标,我首先设定两个问题情境,让学生感知函数与方程、不等式的密切联系,再引导学生从以下两个方面分别讨论:一次函数与一元一次方程、一次函数与不等式。讨论时,结合函数图象从“数”和“形”的角度,进一步体会“以形表数,以数释形”的数形结合思想。现就我本节课教学情况反思如下:

  教学优点:

  1.能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。

  2.能紧紧抓住教学重难点进行精讲精练。本节课重难点是让学生掌握一次函数与一元一次方程、一元一次不等式的`联系,会用函数的观点解释方程和不等式及其解或解集的意义,掌握用图象求解方程、不等式的方法。教学时,每讲一个知识点,我都会及时给予训练题进行巩固,让学生理解理论知识的应用价值,从而把难点知识逐一击破,也让学生一点一点的感悟到用函数模型解决问题的可操作性和简便性。

  3.“数形结合”思想的完美体现。我能够从“数”的方面来解释方程的解及不等式的解集,反过来,又利用一次函数图象从“形”方面直观地表示方程和不等式的解或解集的含义。实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

  4.课堂练习设置恰当。练习量适中,能达到及时训练巩固的目的;练习题的难度有梯度,层层递进;题型新颖,有选择、填空、回答、解答题型,让学生从不同角度理解知识,提高理论知识的认识水平;难度把握较好,情境1、情境2属于铺垫性练习,探究题属于讨论性题型,练习题属于巩固性题型,最后的热气球问题属于拔高性题型。

  教学不足:

  1. 课堂容量有些大,学生组内讨论时间较少。

  2. 对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语表达。

《一次函数》教学反思14

  上完课后失败感比较强。失败感也比平平淡淡的价值大,下面总结一下有何失误。

  本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标。本节的图象解依据了这个道理。”因此本节需要迅速画出图象,利用图象解决问题。而我的失误也主要发生在画图象上,在喧闹声刚刚平息后在九班开始了这节课。课堂需要的课件无法用内网传递,我只得让学生自己先看书,借机我跑到一楼用软盘把课件拷过来。或许这节课的例题更适合学生独立学习,我对学生疑难处加以点拨,这样学生的主动性会调动起来,昨天看的文章了说注重学生的想法,体会。给学生以充分思考的时间。不过我担心 学生的基础参差不齐,还是以我讲授为主,讲后学生进行训练。在讲的过程中犯了一个画图错误,2X-Y=1化成了 Y=2X+1,并用几何画板作出了图象。这种低级错误竟然我没有看出来,后来学生给我指出来了,有的学生看到老师出错了,低着头嘀嘀咕咕,我对着电脑是否重新画呢,时间不多了然后转入了例3的讲解。

  一个小小的笔误,虽然不是知识性的错误,不能反映老师的`教学水平低下,但这种粗心造成的错误在学生的记忆中留下不光彩的一页,看到个别学生眼中不屑的表情,我忍了忍心里的怒火,不能在课堂上训斥他们,错是自己酿成的。 以后一定注意课堂的细节,借机课下我要强化对学生的细节教育,不要在做题过程中出现我所犯的低级错误。

  关注细节,完善课堂和各个环节,不留遗憾,提高质量

《一次函数》教学反思15

  这节课安排在正比例函数的图象与一次函数的概念之后,内容包括:一次函数的图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是以后继学习“用函数的观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用,还是学生进一步学习“数形结合”这一数学思想的很好素材。

  在教学过程中,考虑到学生在学习本节内容之前,已对正比例函数的图象和性质有了一定的认识,因此,首先给出一个正比例函数和一次函数,让学生通过对应描点法画出它们的图象,在对应描点这一活动过程中,让学生体验几组对应点的位置变化,感悟一次函数图象的形状以及与正比例函数图象的位置关系,在此基础上归纳得出“一次函数的图象是一条直线”这一事实,紧接着根据这个事实,让学生利用两个点画出一次函数的图象。对于一次函数性质的教学,着眼于一次项项数k的'变化设计了四个一次函数,让学生先画出它们的图象,再观察相应图象的变化趋势,并类比正比例函数的性质,进而归纳出一次函数的性质。通过这种注重过程和体验的再设计、凸显本节课的教学重点,最后在练习和作业中,设计的几个习题,加深学生对本节知识的理解和应用。

  这节课立足于学生的已有知识,把教学重点分解为一系列富有探究性的问题,让学生在解决问题的过程中,经历知识的发生、发展、形成的过程,把知识的发现权交给学生,让他们在获取知识的过程,体验成功的喜悦,真正体现学生是学习的主人,而老师只是学习的参与者、合作者、引导者,在教学活动中,老师重点是关注学生的实践能力,探究精神和交流合作意识,强调过程性评价。

【《一次函数》教学反思】相关文章:

一次函数教学反思02-22

一次函数教学反思05-28

一次函数图像教学反思08-25

一次函数教学设计及反思05-27

《一次函数》复习课教学反思04-21

一次函数教学反思15篇04-01

八年级数学下册《一次函数》教学反思04-18

一次函数与一元一次不等式教学反思04-18

《一次函数与一元一次不等式》教学反思01-16

一次函数08-17