小数乘小数的教学反思
作为一名到岗不久的老师,我们的任务之一就是教学,借助教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编收集整理的小数乘小数的教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
小数乘小数的教学反思1
今天上午经过精心的准备,邀请实习教师走进课堂听课,课题是《小数乘小数》(教案已发),下面谈谈今天教学后的反思。
1、孩子能说的我绝不说。
说是学生思维的外在表现形式,培养学生说的能力也是我们课堂教学应该重点关注的。这节课孩子能说的有课前的复习题:根据乘法算式说出积的小数位数;小数乘整数的计算方法;为什么可以先用整数乘法来计算;归纳小数乘法计算方法;怎样点积里的小数点;在计算的时候要注意些什么;等等这些问题学生都可以说出来,所以我管好自己的嘴巴坚决代替学生说。而我就是在适当的时机提出这些问题引导孩子们说,说得不完整我再请其他孩子来补充说,需要所有孩子都说得时候,我就让他们同桌互说。
2、孩子能做的我绝不做。
例题是小数乘小数,是新知识;但今天这两节课里几乎所有的孩子都能独立进行计算,这个时候我就放手让他们去算,再来说说怎样算的:有的孩子说前面我们学习了小数乘整数,就是先按照整数乘法计算方法来计算,再点小数点,所以在计算小数乘小数的时候,也是先按照整数乘法方法来计算,再点小数点(这类学生是联系旧知解决新问题的);有的孩子说:我先把3.6扩大10倍,再把2.8扩大10倍,然后再把积缩小100倍来想的(这类学生是通过预习来找到解决问题的新方法),总之是解决难点了。
3、培养学生提问意识。带着问题去学习,可以更好的投入到学习中去。这节课我给孩子们提供了提问的空间:解决完房间的面积后,我问:你还能提一个一步计算的乘法问题吗?课的最后,我问:你还能提出比较复杂一点的问题吗?孩子们能根据我的设计提出有解决价值的问题,使得练习有了一定的层次性。
4、渗透比较的思想。
在比较中找出新知与旧知的联系,在比较中找到解决问题的策略,在比较中归纳计算方法。
(1)、例题与复习的比较,从而引出本课教学的重点——小数乘小数;
(2)求阳台面积与求房间面积比较,引出两位小数乘一位小数的新问题,但比较后得知,计算的方法是不变的,进行了知识的迁移,从而得出了小数乘小数的计算方法。
(3)最后求总面积的`两道算式的比较,引出把整副图看成一个大的长方形进行计算的这种方法比较简便;求阳台比房间小多少的时候,引出先用房间的长(3.6米)减去阳台的宽(1.15米)来计算比较简便。这里没有要求学生进行计算,但通过比较使所有学生感知到简便的列式方法,为后面的学习埋下伏笔。
5、课堂充满着变数,所以我要跟着变。
(1)今天首先教学的b班,孩子们表现的很不错,我基本上是按着教案中的预设进行教学的。等到了a班,学生思想活跃,原本的一些设计就要跟着他们稍微调整。估算意识的渗透,b班是先估再算,a班是先算在估,这时处理估算的作用就有不同,a班算完了估,渗透了用估算来演算的教学思路;b班就是提高估算能力的一个小环节。
(2)b班比较顺利,就带来了一个好处:时间宽裕,所以有时间将练一练第二题全部上课堂练习本;a班就来不及了,所以我就让他们自己任意选一题做,然后进行讲评。
小数乘小数的教学反思2
由于本人执教苏教版国标本五年级,其中的一篇教学实录给我很大启示,并按照此教学思路在我班进行了尝试,效果很好。下面是我结合范本和自己的教学实践整理的资料,供大家参考和交流。
一、深刻把握教学内容,指导教学设计。
小数乘小数的计算方法,教材中是这样归纳的,先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成,看因数中一共有几位小数,积(指未化简的)就是几位小数。
因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的依赖旧知识的迁移类推,让学生自主发现和归纳。
二、创设有效的问题情境,促进算理形成。
1.创设什么情境?
《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。
所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的`生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。
苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的推导基础,以此知识的生长点作为问题情境是可行的。
因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。
2.怎样让问题情境富有“吸引力”?
小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。
因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。
小数乘小数的教学反思3
小数乘小数本来是纯数学化、格式化内容,学生难免会产生厌倦的情绪。为了保证学生思维的高效性,避免计算枯燥无味的感觉。如何让一堂计算课上得既有数学味又生动有趣,既具实效性又讲发展性呢?因本课学习的重点是小数乘小数计算法则的探讨过程,由于学生初步学会了小数乘整数的计算方法,并能通过已获取的知识经验来学习小数乘小数的计算方法,我为学生提供了丰富和具有吸引力的现实情境,大胆放手,使学生在解决问题的过程中,产生认知冲突,讨论中寻找策略解决问题,发现规律总结方法,让学生经历了获取知识的全过程,初步完善并总结出计算法则。
学生有了以上的学习经验后,我接下来组织学生进行有层次的计算练习。虽然都是平时常用到的改错、判断、计算题,但为了让学生的思维认识再次升华,在练习中出现了逆向思维练习题如:3.已知:367×58=21286给下式的因数点小数点: 3 6 7× 5 8 = 2 1 2.8 6 3 6 7× 5 8 = 2 1 2.8 6 3 6 7× 5 8 = 2 1 2.8 6 3 6 7× 5 8 = 2 1 2. 8 6 3 6 7× 5 8 = 2 1 2.8 6 3 6 7× 5 8 = 2 1 2.8 6 如何让这些等式成立呢?同学们陷入了思考中……。课后刘濮龙在他的数学日记这样写到:没写时,我还以为多简单,其实不简单,有一定的难度。刚写完三道才发现难处,心想:“咦?可以点的`都点了,还有三道怎么点啊”。想了半天想不出来,老师公布答案了,老师笑着用鼠标把其它三道题剪切了。我一看,才知道我自己上当了,看来还是要认真思考……这堂课使我知道学数学不难,只要用心就会成功。 在本节课的教学中,我紧紧抓住积的变化规律来引导学生理解确定积的小数点的位置的方法,培养学生自主探索的精神。注重加强知识应用的思维含量,培养学生的应用意识。 一节课下来,我虽然有不少的收获,但教学永远是一门遗憾的艺术。我还是感到有些困惑:目前我开展计算课的小组合作学习仍在探索阶段 ,还没找到最佳的切和点,我仅仅还是停留在要求学生学会表达、学会倾听、学会思考的层次上。
小数乘小数的教学反思4
过小数乘法的教学,学生明白了根据积的变化规律,即:先按整数乘法的计算方法得出积,再看两个因数共有几位小数,就从积的右边起向左数出几位,点上小数点。积的位数不够,要在积前用0补足后再点小数点 面对这种严峻的情况,使我不得不静下心来重新审视自己的课堂教学,并深刻的进行了反思:
一、小数乘法计算方法依据因数变化与积的变化规律,而我在复习这部分知识时,只停留在填表格、分析变化的原因上,仍按照地地道道的传统模式,出示问题一一找答案一一分析原因,以达到掌握某知识点的目的,抑制了学生去发现、去探究,而应该放手让学生通过独立思考或小组合作学习的形式去探究,我先让学生充分发表自己的意见。最后我提醒同学们,数学讲究严密性,处理后的积不能与原来的原始积混为一谈。做1.25×0.08时,我们先用125×8=1000,然后看因数当中一共有4位小数,于是就从积的右面起数出4位点上小数点!而不是先去零后,再数位数!要注意的是我们在点上积的小数点时就已经确定了一点:积是四位数!虽然为了书写简便,在不影响积的大小的情况下,我们根据小数的性质将小数部分末尾的0省略掉。但省略不等于没有。我们在判断小数乘法的积是几位小数时,要根据小数乘法的计算法则,对原始的积进行判断,所以三位小数乘一位小数,积一定是四位小数。自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。新课标指出:学生的数学学习基础是生活经验。虽然,教材中的例题也来源于生活实际,但是离学生的生活经验还是比较远的。如果能够找出生活中的实例,让学生说出变化规律,效果会更好。
二、在学生做题中出现错误时,我总是急于给同学分析出错的情况均有以下几种:
1 )由于马虎出现计算性错误。
2 )两个因数中,第二个是中间有零的,学生计算时特别容易把数位对错。
3 )在计算结果中把积的小数位数数错,导致小数点的位置点错。而没有让同学自己找找原因,如果我让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的`原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。这两种办法都有利于学生的主动学习。
三、没有抓住小数乘法和小数加法计算的根本。小数加法和小数的乘法最根本的区别就是小数点的位置情况,在开课之前我没能作出预料,可是在学生的做题中,我却发现了好多同学在学完小数乘法的末位对齐后,加减法就忘记了小数点对齐。我想如果我能在课前作好充分的意料,在课上作好强调,也会减少学生的出错。
从今天的失败中,我找到了自己在教学中存在的问题,为我在下一部分的教学提了一个醒,也使我越来越认识到:没有精心的备课,就没有高效的课堂。没有了反思,就没有自己的教育信念,永远成不了具有自己鲜明个性的教师
小数乘小数的教学反思5
之前孩子们会算整数乘整数,在学小数乘小数时,我先放手看孩子们的自然状态,结果部分同学因为假期补习孩子们会算,但问其所以然,结果不会说,另一部分就是孩子们的自然状态,例如 2* 0.56=
孩子们按着整数的方法交叉相乘,结果 0.56中的0也与2乘了一遍,孩子们已经有了思维定势,就是每个都与2相乘一遍,并不是想办法把小数转化成整数算,说明学生对把小数扩大或缩小不是很熟练,所以再引入把小数转化成整数时比较牵强,因此对理解上还需大量练习,让孩子知道来龙去脉,对今后的题型变化也做好基础。通过联系之后孩子们熟练了算法脱离了中间的转化环节,直接能算出结果,但是点小数点也成了问题,通过学了因数的小数位数和等于积的小数位数之后,孩子们学会了简便方法比之前通过转化关系缩小原来的'多少分之一这种方法方便不多了,所以感觉数学需要的简单,找到好的计算方法会更容易记住,但同时要明白其中的算理。
小数乘小数的教学反思6
小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的`感觉。而教法上更多地可以依知识的生长结构近移类推,让学生自主发现、归纳和掌握。
小数乘小数是第一单元的一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。
由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:1.方法上的错误。例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别乘10.这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,2.计算上的失误。(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。(2)因数的数位较多时,个别学生直接写出得数(如4.8×0.24的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自己的课堂,审视自己的教学,并对此进行了深刻的反思。
小数乘小数的教学反思7
五年级的学生已经具备了一定的分析判断的能力,对身边与数学有关的事物有较强的好奇心和探索精神,我抓住他们这一特点,在学习过程中,多采取小组合作探究的教学方法,充分体现学生的学习积极性和主动性,极大地激发了学生的学习热情。
在进行“验算”环节,首先让学生判断例题中计算的对与错,再说出自己的理由,鼓励他们大胆思考,然后小组合作讨论,激发有创新的思路。经过交流讨论,同学们有的根据条件来说“鸵鸟的速度是非洲野狗的1.3倍,所以鸵鸟的速度应该快,而不是比56小!”说得极有道理,这是上节课中的一个重要知识点,加入了自己的理解,还有学生补充道:“56乘1.3的积应该比56大,因为一个非0的数乘大于1的数,积比原来的'数大!”教材上也有,但这样的解释更清查明了!更有学生利用上节课“因数与积的小数数位间的关系来解释”,超越教材!
在整节课的学习中,学生能积极的思考,运用发现的规律去解决问题,效果还是比较好的!不足之处在于个别学生在形成技能环节,还需要多练习,还有待提高。
小数乘小数的教学反思8
教材小数乘小数的计算方法,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,我分为以下三点进行:
一、知识的迁移过程
通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05×4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.20×8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2×0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2×0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
二、知识的归纲过程
通过一道0.8×1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7×0.3和0.56×0.04,让学生在利用0.8×1.2所得的方法进行计算,然后排列出0.8×1.2因数一共有位小数,积0.96也是两位小数,6.7×0.3中因数一共有两位小数,积也有两位小数,0.56×0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的.右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
三、知识的巩固过程
1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29×0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29×0.07,先29×7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
2、突出口算为小数乘法简便运算打基础。
如在课堂上布置了多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!
小数乘小数的教学反思9
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。其实质就是根据积的变化规律而归纳而成的。
首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的'因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!
小数乘小数的教学反思10
《小数乘小数》是五年级上册第一单元的内容。这一内容的教学重点是小数乘法的计算法则;教学难点是小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
小数乘小数是在学生学习了小数乘整数的基础上进行教学的。我以为这一知识点学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况却并不尽如人意。在课后练习中,学生出现错误的现象比较多:1、方法上的错误:例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别扩大10倍,这样乘得的积就会扩大100倍,为了使积不变,最后还要将积缩小100倍;但是在计算的过程中,部分学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题。还有的学生把小数乘法与小数加法点小数点的方法混淆在一起,或者只看其中一个因数的小数位数。2、计算中关于0的问题;部分学生在积的末尾有零时,先划去0再点小数点;部分学困生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。3、计算上的失误:因数的数位较多时,个别学生直接写出得数(如2.15×2.1的竖式下直接写出4.515,没有计算的过程),做完竖式,不写横式的得数等。
面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:本单元不是我想象的'那么简单,既要注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。为此,我决定从以下几方面加以改进:
1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。
2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。
3、小数加减法与小数乘法的对比练习要加强。
小数乘小数的教学反思11
教学内容:苏教版国标本五年级数学第86——87页例1、“试一试”、“练一练”、练习十五1——3题。
教学目标:
1、让学生通过主动探索,理解小数乘小数的计算方法,能正确地进行相关的计算。
2、让学生在主动探索的过程中,进一步增强探索数学知识规律的能力。
3、让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,从而激发学习数学的兴趣,提高学好数学的自信心。
教学过程:
一、情景导入,引入新课:
1、课件出示例1小明房间的平面图。
提问:从图中你可以得到哪些信息?想解决什么数学问题?
可以怎样列式?
根据学生的回答,出示以下问题:
(1)房间的面积有多大?
3.6×2.8
(2)阳台的面积有多大?
2.8×1.15
提问:这两道算式和我们以前学过的小数乘法有什么不同?
2、揭示并板书课题:小数乘小数。
二、合作探究,掌握算法。
1、初步探究小数乘小数的计算方法。
(1)估算初步探索:
师:请你先估计一下3.6×2.8的积大约是多少?
小组合作:先把自己的想法说给同桌听,再全班交流。
把3.6和2.8都看作3,3×3=9,面积在9平方米左右。
把3.6看作4,2.8看作3,4×3=12,面积应该比12平方米小一点。
……
(2)笔算进行探索。
师:通过刚才的估算,我们已经知道了3.62.8的'积大概在9的左右。那么实际的结果是多少呢?我们还应该学会计算的方法。通常用列竖式的方法进行计算。
进一步启发:回想一下以前计算小数乘法的方法,我们是否可以先把这两个小数都看作整数来计算,这样你会做吗?
让学生先把这两个小数都看作整数来计算。
讨论:这样后,得到的积是不是原来的积?为什么不是?那主要的变化在哪里?
4人小组讨论,然后全班交流。
学生再阅读课本86页,进一步弄清课本的竖式图示的意思:
原来两个小数都当作整数相当于都乘了10,积是原来的100倍,只要把现在得到的积除以100,就能得到正确的积。
问:正确的结果与我们估算的结果接近吗?能正确估算结果的同学真棒。
2、进一步探究小数乘小数的计算方法。
教学“试一试”
(1)根据刚才你解决问题的方法,你能计算出2.8×1.15的结果吗?你能借87页上的示意图来说一说你的想法吗?
学生独立完成计算后与同桌交流想法。
(2)全班交流。把两个因数都看成整数,相当于这两个因数乘了1000,得到的积就是原来积的1000倍。要使现在的积等于原来的积,只要用3220除于1000。
问:现在的积可以化简吗?结果是多少?
三、概括推理,总结方法。
1、引导学生比较例题与“试一试”的计算过程。
观察例1中的因数和积,你发现了它们之间有什么关系?
再观察“试一试”中的因数和积,你发现了它们之间有什么关系?
你从中得到了什么启发?你能说一说因数与积之间有什么关系吗?
小结:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。
2、引导学生总结小数乘小数的计算方法。
师:现在你能总结出小数乘小数的计算方法了吗?
在小组里交流你的想法。
在全班里交流你的想法。
(!)先按整数乘法算出积是多少。
(2)再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意结果能化简的要化简。
四、实际练习,内化理解。
1、完成“练一练”第1题。
学生独立练习,小组交流校对。
2、完成“练一练”第2题。
独立练习,指名板演。集体评讲。
五、反思总结,深化提高。
今天我们应用了以前原有的知识,
通过主动积极的探索,得出了小数乘小数的计算方法。经过这个过程,你有什么体会和收获?还有什么值得探讨的地方?
六、完成书面作业:练习十五1、2、3题。
《小数乘小数》教学反思
说算理在我们计算的教学中是十分重视的。的确,说算理对于学生计算的方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上进行,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。
在现行的教学中,一般是按教材的编排,采取如下方式引导学生理解小数乘法的计算方法。
1、出示算式13.5
×0.5
2、引导学生观察和以前算式有什么不同。
3、讲算理:即13.5→扩大10倍→135
×0.5→扩大10倍→5
67.5→缩小100倍→675
然而教学效果令人十分失望。当我引导完上述的转化过程时,要求学生说说为什么这样计算,大部分学生看着板书也说得清算理。但计算时,根本未按算理去做,尤其是中差生错误百出。课后我做了认真反思,上述推算我是严格按教材设计意图、教案要求,且很有条理去教学的,为什么还是没有真正理解算理呢?那是因为教材的推算过程是为教者和学者提供一种借鉴的思路。在实际教学中不能照搬照抄,更不能把教材的思路用教师所谓的“启发”灌输给学生,否则推算说理就成为了形式。为此,我就尝试了一种自己的教法,引导学生利用已有的知识经验自主探索,在经历感悟的过程中增强对算理和算法的理解。结果按我设计的教学方法学,班级学生不仅计算方法掌握快,算理也说的非常清楚,教学效果十分令人满意。
小数乘小数的教学反思12
本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程。教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。
教学时,我首选从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。
在教学竖式计算之前先让学生“估一估”,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。
最现实的教学起点是学生认知上的困惑与矛盾处。学生根据以往小数乘整数的经验,能够凭借直觉判断小数乘小数也能转化乘整数乘法进行。然而按整数乘法算出积后如何回归到小数乘法的积,恰是学生的思维困惑处。在这里教学时我设计了一组课件,通过动态演示,适时呈现推理过程,让学生思考虚线框里的箭头图及提示算式的.意思,扶着学生一步步完成整个推理过程。
例题教学完成后,及时安排“点小数点”、“模仿计算”、“改错”、“口算”等练习,通过扶放结合,循序渐进的数学推理活动,学生在探索中感受着计算思维的内在魅力,感悟着知识间的内在联系、解决新问题的有效途径——转化策略,同时对“积的小数位数与因数小数位数”的关系也有了初步的体验。探索之后应是发现与提升。通过比较因数与积的小数位数的关系,学生在理解算理的基础上自然发现积里点小数点的操作方法。随后归纳概括出小数乘小数的计算方法也就水到渠成了。
教学中既有突出重点方法的专项练习、基本练习,又有运用方法解决问题的实际应用,更有拓展思维的挑战性练习,希望通过一系列有层次的练习活动,实现学生计算教学中的基础性和发展性的和谐统一。
当然,这节课也有不成功之处,在与大家的研讨与交流中受益。努力把数学课上得简单、快乐,使数学课充满生机与乐趣,使数学课成为学生学习创造的乐园,让每一个学生都能体会“数学好玩”,让每一个学生都能在数学学习中享受数学,让每一个学生都拥有一个美丽的数学童年,这是数学老师追求的目标。
小数乘小数的教学反思13
这节课是学生第一次接触小数乘法,我觉得教学时要注意下面几点:
1、放手让学生自己去发现规律。数学教学要以人为本;数学问题要从生活中来,再应用到生活中去;教学时要有意识地进行探究式教学,教师要把学习的主动权还给学生,该放手时就放手,当学生能以课堂主人的身份主演舞台时,用他们的理性主动诠释课堂,阐明自己与众不同的观点,为课堂增色时,我们就应该放手了,可以尽情欣赏他们的表演。
2、突出小数的位数的变化。小数位数的变化是本节课的一个难点,因此我为这个把教学内容提前到例2之前进行,并安排了两个练习,一个是探索积的小数的位数与因数中小数位数的关系,二是判断小数的位数。在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的'位数和因数的小数位数都是一样的。
3、突出竖式的书写格式。有了前面对算理的理解,当遇到用竖式计算0.8×3时,学生不再感到困难,最后引导小结:笔算小数乘整数应该做到末尾数字对齐。
然而也有很多不足,自己在课堂教学中应变能力有待提高,有时忽略学生的想法,没能及时捕捉到学生发言中有价值的教学资源,教学在动态中延续不够,说明老师在课堂上要注意倾听和思考,在今后的的教学中我会多注意这些细节。
小数乘小数的教学反思14
新课程标准提倡数学生活化。对此的片面理解就是数学知识要和生活联系。于是,摒弃了课本中的例题,以为创设了生活情境就是新理念。再加上设计时,只考虑到了:例题中的3。6×2。8和2。8×1。15要体现小数乘法的两种情况,我在设计例题时以超市购物为例,刚开始在设计时有些数据太大了,没考虑到实际作用,幸好后来得到了及时的改正。
这节课设计的意图是力求让学生通过“探索”,自主地发现规律。我们的学生已经习惯了回答“是不是?”“对不对?”之类对思维很低要求的问题,一旦遇到“说说你是怎么想的?”“这些算式有什么共同的规律呢?”一类需要将他们的思维过程充分展示出来的.问题,就显得手足无措了。
教材中没有安排小数乘整数的口算,而实际在口算中由于数目比较小,计算结果可以比较快速的反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中我增加了小数乘整数的口算练习,让学生说出自己的想法,同时用小数乘整数的意义检验方法的正确性,让所有的学生都知道计算小数乘整数可以看成整数的计算。
我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。
小数乘小数的教学反思15
本节课的内容基于整数乘法上,而进行有关计算的课程,我按以下步骤进行教学。
一、深刻把握教学内容,知道教学设计
教材并没有归纳小数乘小数的法则,参考人教版这样归纳:先按照整数乘法,计算看因数中一共有几位小数,再从积的右边筛骨出几位,点小数点。在教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积就是几位小数。向学生指出,如果积是未化简的情况,这个方法可以使用。因此,本课的重点和难点都应当在于帮助学生发现和掌握。因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数的位置的方法。关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,避免学生出现计算枯燥无味的感觉。
教学方法上,更多地可以依赖知识的结构间的迁移类推,让学生自主发现归纳饿掌握。
二、创设有效的问题情境,促进算理形成
首先复习铺垫,沟通联系,由36×28=1008,3.6×28,让学生观察,题目是怎样变化的`?那么积的小数点应点在哪里?
最后总结一句口诀:
一算、二数、三点点。
最后是自主实践,先由一两个错题,通过让学生找错,说理由,进一步深化理解。
总之这节课我紧紧抓住积的变化规律来引导学生理解确定积的小数的位置的方法,关注了学生思维的有效生长。
【小数乘小数的教学反思】相关文章:
小数乘小数教学反思03-27
小数乘小数教学反思05-28
小数乘小数教学反思15篇03-31
小学数学小数乘小数教学反思04-11
小数乘小数教学设计08-07
《小数乘整数》教学反思02-22
《小数乘整数》教学反思08-15
《小数乘整数》教学反思05-23
小数乘整数教学反思01-15
小数乘小数08-16