现在位置:范文先生网>心得体会>教学反思>八年级上册数学教学反思

八年级上册数学教学反思

时间:2024-11-04 17:39:19 教学反思 我要投稿

八年级上册数学教学反思15篇[优选]

  身为一位优秀的教师,我们都希望有一流的课堂教学能力,对学到的教学技巧,我们可以记录在教学反思中,如何把教学反思做到重点突出呢?下面是小编整理的八年级上册数学教学反思,仅供参考,欢迎大家阅读。

八年级上册数学教学反思15篇[优选]

八年级上册数学教学反思1

  平方差公式是在学习整式乘法的基础上得到的.学习“平方差公式”的过程是探讨知识发生的过程,学生们一起研究如何经过由具体到抽象概括得到公式,这将有助于训练学生的思维,使学生领悟到数学的思想和方法.

  平方差公式的教学,使我深刻的体会到:数学学习活动,其基本出发点是促进每一位学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有知识经验出发,让学生亲身经历知识的`形成和发展过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。对初二学生们来说,数学学习已有一定的能力,但还缺少概括、总结的能力.所以对“平方差公式”的教学,除了让学生掌握公式的结构特征外,还要理解公式公式中字母的广泛含义.另外更重要的是让学生参与到公式的推导过程.

  本节课我通过已学的计算引入,借助学生的探究,猜想,讨论,总结,由学生自己得出结论.激发学生学习的兴趣,激活他们的思维。采用“主动探索和引导发现”的教学方法.让学生们充分体会到:数学是可以通过自己的猜想,归纳,总结,和验证能得到的.另外,本节课我注重让学生观察题目是否符合公式的条件,即两个相乘的式是什么,是不是两个式子的和与差相乘,然后再按公式计算.平方差的关键是从多项式乘法到乘法公式是从一般到特殊的认识过程的范例,对它的学习和研究,丰富了教学内容,也开垦了学生的视野.平方差公式应用十分广泛,教学是要注意引导学生进行观察、分析,使学生们掌握平方差公式的结构特征,理解公式的意义,并能正确地运用公式.

  最后由于时间关系,对平方差公式的字母的含义强调不够,只是简单地提到公式中的a和b可以是具体数,也可以是单项式或多项式,有时还需要将式子变形,如(a+b+c)(a—b—c),变形为[a+(b+c)] [a—(b+c)]。原因是学生的能力有一个发展过程,理解字母的广泛含义也要结合公式的难易来逐步安排,本节课还没讲到,这个内容留作第二课时讲.

八年级上册数学教学反思2

  面临国庆假期,学生有些沉不住气,放假回来还要进行月考,无疑,这对学生是一种考验,学生没有足够的自制力利用假期进行复习,只要它们能够按时完成作业我就心满意足了。因此,要在假期前做一定的准备,按照我们的集体备课时间,我们赶在运动会之前专门安排一节课进行复习,也算是自我安慰吧。

  本次考试我们把前两章的内容都加进去。第一张前面进行了复习、检测,也比较简单所以专门针对第二章进行重点复习。第二章轴对称主要内容是从生活中的图形入手,学习轴对称及其基本性质欣赏体验轴对称在生活中的广泛应用。然后在此基础上利用轴对称,探索等腰三角形的性质,学习它的判定方法,进一步学习等边三角形。本章轴对称的.性质、等腰三角形的性质和判定是重点要注意让学生掌握。人们生活在三维空间里丰富多彩的图形世界给图形与几何的学习提供了大量素材,在教学中我们注意联系实际,从实际出发引入概念并将所学知识应用到实际生活中。本章内容较多,教学时注意各部分之间的联系,进行有机的整合。在内容处理上书中含有大量的思考、探究、归纳等然后学生多活动,探索发现几何,经历知识的“再发现”过程。在探究活动中发展创新思维能力,改变学生的学习方式。在发现的基础上再经过推理证明这些结论使得推理证明成为学生观察、试验、探究得出结论的自然延续是图形的认识与证明有机的整合。例如Χ缘妊三角形“等边对等角”“三线合一”的性质的得出ネü设置“探究”“思考”让学生剪出等腰三角形,并进一步利用轴对称的性质思考其中相等的线段和相等的角,进而发现等腰三角形的性质。

  接着通过做出等腰三角形的对称轴得到两个全等的三角形,从而利用三角形的全等证明。这样让学生经历观察、试验、探究、归纳、推理、证明的全过程。

八年级上册数学教学反思3

  整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的量适当,表达流利,跟学生的.互动性好,学生的参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的学习态度。

  然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的文字等形式去补充过渡,让学生有突兀的感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。

  对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。

八年级上册数学教学反思4

  一、教材处理

  本节内容是轴对称相关知识的复习课,主要内容是复习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索回顾等腰三角形的性质,复习它的判定方法,并进一步复习等边三角形。

  二、教法学法

  整节课的安排,努力贯彻“学生为主体、教师为主导”的教育原则。教师只是对部分知识的复习加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人。其中动手操作不仅适合二年级学生的年龄特征,更能激发学生的.求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去回顾与掌握所学知识。我认为,在经历了亲自探索、讨论交流、相互启迪的过程后,每位学生的自主意识、自主能力都将得到提高,最终将达到提高学生思维品质的教育目的。

八年级上册数学教学反思5

  一、教材分析

  本节内容主要介绍平方根与算术平方根的概念,先讲平方根,再讲算术平方根。下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打牢基础。平方根和算术平方根的概念属本章的重点内容。它是后面学习实数的准备知识,是学习二次根式,一元二次方程的基础。另外,从运算角度来看,加与减,乘与除,平方与开方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。

  二、教学过程设计

  一般新知识都是建立在原有知识的基础之上的,引入新课是建立在学生对数字的规律和联系的把握上的,学生是比较容易接受的。为此,我在教学时设计了这样两种题目:一种是知道正方形的边长求面积;还有一种是知道正方形的面积求边长,对于第一种题目,学生利用正方形的面积公式很快就可以解决,,对于第二种题目,面积为9、16、49的,学生也可以很快利用平方的知识进行解答,但是当面积为10时,学生就被难住了,到底边长应该是多少呢?若设正方形的边长为x,则符合题意的方程为x2=10.归纳出问题的实质:要找一个正数,使这个数的平方等于10.

  学生无法找到一个数,使它的平方等于10,这时,我告诉同学们,当我们无法找到符合这个条件的数时,我们就需要引入一个新的知识:平方根(引入新课)。那到底什么叫做平方根呢?首先由学生回答四道计算平方的.算式,然后由学生通过观察,并结合互逆运算的知识,启发学生找出等式两边存在的联系,最后我在学生总结的基础上,进行点播:等号右边的数叫做等号左边各数的平方数;反过来,等号左边各数就叫做等号右边各数的平方根。然后进一步归纳出三个结论:一个正数有一正一负2个平方根,它们互为相反数;0的平方根只有1个,还是0;负数没有平方根。通过这些探索,最后让学生体会到,要求一个非负数的平方根,可以利用平方来检验或寻找。

  2.引导概念的符号表示

  通过学生动脑,动口对平方根概念进行正说与逆说(如:9的平方根是,反过来是9的平方根),加深对平方根概念的初步理解;然后在上面叙述的基础上提出平方根概念的符号表示方法后,再次利用学生所举的上列等式,提出问题:请你用符号语言来表示等式右边各数的平方根,并计算出结果。本环节,学生对平方根概念的理解经历了由文字语言到符号语言的转化。

  3.巩固提高

  得到概念后正面的强化很重要,因此在第三个环节,我设计了例题:如何求一个数的平方根,算术平方根?先自己板书,给出规范的书写格式和正确的表达方法。随后就是通过不同形式的练习,让学生对平方根的概念及表示方法形成正确的印象并加以巩固。

  三、不足分析

  1.概念的讲解得不够详细到位,我并没有紧紧地抓住概念的内涵。平方根这一概念,关键在于“根”字上。我通过实际例子培养了学生的数学建模能力,也顺利地列出方程x2=25,就是没有很好地把握住x=±5是方程x2=25的根这一关键之处。

  2.由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是表示不规范。求49的平方根,他写成“=±7”出现错误。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别与联系,在讲课中应反复强调平方根与算术平方根的区别与联系。

  3.没有对概念进行总结。在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。

  4.学生的练习不够。学生对概念的理解只停留在死记硬背,机械模仿的阶段。所以,今后在课堂上要多给学生练习巩固的时间,多提供一些类型不同的题目,使学生在练习中慢慢强化对概念的理解。

八年级上册数学教学反思6

  1、关注对教学难点的教学。

  新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

  2、关注对学生学习方法的指导。

  建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

  3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师

  在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的`例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

  4、让学生在“做”中学。

  依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

  5、加强反思,注重对学生数学思想方法的渗透。

  美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

八年级上册数学教学反思7

  节课的目标是会推导公式(a+b)(a-b)=a2-b2,并能简单计算。上一节学了多项式×多项式的运算法则,因此在回顾旧知识利用法则来计算(a+2)(a-2),(2x-y)(2x+y)的同时直接引入本节课的内容,问学生上面的两个多项式乘多项式中各个式有什么特征?结果又有什么特征,学生的回答跟预测的差不多看是能看出来但要把他描述出来有点困难,因此指导并和学生一起用语言描述:二项式乘二项式中其中一项相同,另一项互为相反数的积等于(自己不回答学生回答)两项的平方差,这时就问对吗?学生很快就能反映过来,更能加深印象结果应该等于相同项的平方—互为相反数项的平方。继续探究同类型的计算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此规律,让学生归纳出结论(用式子),因为从特殊到一般的归纳学生比较擅长,得出结论是:(a+b)(a-b)=a2-b2,因为结果是平方差所以把公式的名称叫为平方差公式。接着那学生尝试着用文字归纳,为了归纳的方便把连接两项的符号看成运算符号,该怎么描述此规律:两项的和乘两项的差(提示学生这两项跟前面的两项是一样的)等于这两项的平方差,接着几个二项式乘二项式的练习让学生板演,目的是看看学生的易错点并一起归纳怎样做不容易出错及应注意那些事项:利用平方公式计算,首先观察是否符合公式的'特点,用不同的符号把找到相同的项和相反的项表示出来,并把它写成公式的形式,先不要急着答案出来。让学生比较用法则计算跟用公式计算的区别,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,但运用公式计算一定要看是否符合公式的特征,严格要求不能乱套公式。

  为了让学生理解公式的几何背景,通过拼图计算,既可以直观说明公式的几何特征,又可以体现数形结合现要将其中一块边长为b米的正方形地块改种玫瑰花,请问剩下的郁金香花圃的面积有多少平方米?你可以有哪些方法计算这部分面积?学生经过动手实践,拼出了许多种图形都充分说明了平方差公式,用几何图形的面积说明平方差公式,为学生营造一个宽松、和谐的学习环境。只有设计出具有丰富而准确内涵的特定数学活动,才能使我们的课堂教学在不同水平的数学活动的相互交融递进中,更好地达成新课程强调的过程。

八年级上册数学教学反思8

  本周主要授课内容为《整式的乘法》,这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前期所学知识的延伸。这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一部分内容主要分成三部分内容。

  第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

  第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

  第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

  在整个教学中,难点与易错点主要是:

  1、符号不能正确的'判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

  2、同时注意整体思想的渗透,作为整体的相反数的的变形,指数的奇偶性来判断符号。

  3、注意实际问题主要是图形的面积问题的正确解决。

  在本章教学中,通过拼图游戏,让学生动手操作,在活动中引出单项式与多项式相乘,多项式与多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

八年级上册数学教学反思9

  《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用。上完本节课后,通过其他老师交流,自己静心反思,我主要有以下体会:

  一、课前的认真准备是上好一节课的关键。

  作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。但是由于我在上这一节课的时候,连着前面轴对称的性质的内容一起上了,从而导致内容太多,重难点没有很好的突出。

  二、在教学活动过程。

  整个教学过程中,没有很好体现以学生发展为本的精神。虽然从问题的导入,性质,判定的引出都是由学生动手操作讨论得出,但是由于我在安排这节课的时候,准备要讲得内容太多,导致很多时候都是我一个人在讲学生在听,学生动手写练习的时间就变得很少。再者这节课的重点是线段垂直平分线的性质和判定,我也没有很好的突出重难点。虽然有很多不足之处,我觉得有些地方还是可取的,如:

  1、注重数学思想方法的渗透。

  如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。

  2、注重学生几何语言的训练

  在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。

  本节课得到的定理为:线段的`垂直平分线上的点和这条线段的两个端点的距离相等。

  用几何语言表示为:∵MN是AB的垂直平分线,点P为MN上的任意一点(已知)。

  ∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)

  通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。

  逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

  用几何语言表示为:

  ∵PA=PB(已知)。

  ∴点P在AB的垂直平分线MN上。

  (和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)

  3、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。

  三、教后反思。

  针对这一节课中出现的问题,我做出了如下的反思:首先在备课的时候,一定要抓准重难点,安排好一节课的内容,抓准一节课的时间;其次一定要体现以学生为主的原则,要讲练结合,给学生足够多的时间做练习,充分理解接受新的知识。在今后的教学中,我一定不断不改进自己的不足之处。

八年级上册数学教学反思10

  函数是中学数学中的重要概念、它既是从客观现实中抽象出来的,又超越了千变万化的客体的个性,其内涵极为深刻,外延又极为广泛、所以它既是重点,又是难点、教学时,教师应采取以下有效的措施:

  1、注重概念的引入

  为引入函数概念,课本上讲了四个例子,教师可根据学生的实际再增加一些例子、对每个例子都要进行分析,揭示它们的共同特性:

  (1)问题中所研究的两个变量是互相联系的;

  (2)其中一个变量变化时,另一个变量也随着发生变化;

  (3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应、

  2、准确理解定义

  课本中函数的定义包含着三层意思:

  (1)“x在某一范围内的每一个确定的值”,是说自变量是在某一范围内变化的,它揭示了自变量的取值范围;

  (2)“y都有唯一确定的值和它对应”,它既揭示了所研究的函数是单值函数,又反映了两个变量间有着一个相互依存的关系,即函数的对应法则;

  (3)谁是谁的函数要搞清、定义中说的是“y是x的函数”、

  3、不断深化概念

  在几类具体函数的研究过程中,要注重把所得的具体函数与函数的定义进行对照,使学生进一步加深对函数概念的理解、

  4、强化函数性质的应用

  不同的函数有不同的特性,探求并掌握一个新函数的性质是我们追求的目标、在掌握函数性质的.同时,要注重强化学生应用函数性质的意识、应用函数性质时还应注意以下两点:

  (1)、借助函数解题

  我们知道,代数式、方程、不等式与函数有着密切的关系,因此可构造函数,利用函数的性质解决有关的问题、例如构造二次函数研究一元二次方程根的分布问题、解一元二次不等式等、

  (2)、利用函数解决实际问题

  利用函数知识解实际问题是近几年高考出题的热点、这类题目可以培养学生综合运用

  知识的能力,增强学生用数学的意识、但教材中这类题目设计得较少,应根据学生的实际补充一定的例题或习题、

  5、加强数学思想方法的教学

  新大纲把数学思想方法纳入数学基础知识的范畴,因此要加强数学思想方法的教学、函数这一章主要体现了以下思想或方法:

  配方法、这一方法要求所有的学生都要掌握、

  待定系数法、这一方法是求函数解析式的重要方法,要切实掌握、教学中,还可以根据学生的实际,介绍待定系数在其他方面的应用、

  数形结合法、数形结合是数学的重要思想方法、在几类具体函数的研究过程中,要始终抓住数与形的结合,即根据解析式画出图形,又依靠图形揭示函数的性质、数形结合也是一种重要的解题方法,要引导学生利用数形结合法解题,以开发智力、培养能力。

八年级上册数学教学反思11

  本节课的目标是会推导公式(a+b)(a-b)=a2-b2,并能简单计算。上一节学了多项式×多项式的运算法则,因此在回顾旧知识利用法则来计算(a+2)(a-2),(2x-y)(2x+y)的同时直接引入本节课的内容,问学生上面的两个多项式乘多项式中各个式有什么特征?结果又有什么特征,学生的回答跟预测的差不多看是能看出来但要把他描述出来有点困难,因此指导并和学生一起用语言描述:二项式乘二项式中其中一项相同,另一项互为相反数的积等于(自己不回答学生回答)两项的平方差,这时就问对吗?学生很快就能反映过来,更能加深印象结果应该等于相同项的平方—互为相反数项的.平方。继续探究同类型的计算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此规律,让学生归纳出结论(用式子),因为从特殊到一般的归纳学生比较擅长,得出结论是:(a+b)(a-b)=a2-b2,因为结果是平方差所以把公式的名称叫为平方差公式。接着那学生尝试着用文字归纳,为了归纳的方便把连接两项的符号看成运算符号,该怎么描述此规律:两项的和乘两项的差(提示学生这两项跟前面的两项是一样的)等于这两项的平方差,接着几个二项式乘二项式的练习让学生板演,目的是看看学生的易错点并一起归纳怎样做不容易出错及应注意那些事项:利用平方公式计算,首先观察是否符合公式的特点,用不同的符号把找到相同的项和相反的项表示出来,并把它写成公式的形式,先不要急着答案出来。让学生比较用法则计算跟用公式计算的区别,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,但运用公式计算一定要看是否符合公式的特征,严格要求不能乱套公式。

  为了让学生理解公式的几何背景,通过拼图计算,既可以直观说明公式的几何特征,又可以体现数形结合。

八年级上册数学教学反思12

  一、本节课的教学内容为反比例函数的图像与性质的新授课第三节课,在“数形结合”的主线下,使学生具有了自我更新知识的能力,具有了可持续发展的能力。

  二、首先简单复习了反比例函数与一次函数的表达式、图像、图像象限和增减性,其次利用基础训练的五个题目求反比例函数表达式和图像及增减性,复习一下代入法和待定系数法;

  三、例题精讲,在例题的处理上我注重了学生解题步骤的培养;同时通过题目难度层次的推进;拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题;达到在课堂中就能掌握比较大小这类题型。但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

  例题在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对所学的一次函数坐标等方面可以有一点的.复习。从整体来看,时间有点紧张,尤其是最后一个与一次函数相结合的综合性题讲解得太少,学生还不太能理解,导致小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势

  四、不足:虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性,本节课的时间分配上还可以再调整;总之,我会在以后的教学中注意细节问题的。

八年级上册数学教学反思13

  整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的'应用不熟练,运算符号的确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。

  依据普陀区中学数学教学常规实施要求:

  复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的运算法则的特征解决易错题;同时在各例题的设计上层层推进。例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;例2需注意区分幂的运算法则与同底数幂相乘法则的不同处,并注意运算顺序与运算符号的确定;例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。

八年级上册数学教学反思14

  轴对称图形不仅仅是把一个图形平均分成两半,而且对于一幅图中的任何两个对应点到对称轴的距离都是相等的`。

  在教学“轴对称”这节课时,首先让学生独立画出例题1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例题1,接着在例题1的教学过程中,适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征,通过引导学生分别观察不同类型的轴对称图形的各对应点与轴之间的关系,进而让学生探索、发现图形成对称的基本性质。

  不足之处如果这节课是运用多媒体上的话就更直观、更有效果了,直接可以显示出“折叠”、“重合”形成轴对称图形,清晰而一目了然。

八年级上册数学教学反思15

  本节课属于人教版八年级数学上册第十五章《整式乘除与因式分解》第二节中的内容,前一节已学习平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。

  同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的.学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

  在今后的教学中应注意从以下几个方面改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。

【八年级上册数学教学反思】相关文章:

数学上册教学反思04-18

上册数学教学反思04-18

八年级上册数学教学反思01-03

八年级上册数学教学反思10-31

人教版八年级上册数学教学反思04-16

八年级上册数学教学反思(精选21篇)11-30

八年级上册数学教学反思(通用20篇)09-02

数学上册《回家路上》的教学反思10-20

八年级上册生物教学反思03-26

八年级上册物理教学反思03-21