现在位置:范文先生网>资料大全>说课稿>圆的面积说课稿

圆的面积说课稿

时间:2022-08-15 03:45:33 说课稿 我要投稿

圆的面积说课稿

  圆的面积说课稿(一)

圆的面积说课稿

  说课内容是全日制小学数学课本第十二册"圆的面积".本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

  圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基础,本节课的教学目的要求是:

  1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

  2.通过教学培养学生初步的空间观念。

  3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

  课堂教学程序设计

  本节课分四个环节来设计教学。

  第一个环节:复习导入新课

  为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积".

  第二个环节:新授

  教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

  (一)公式的推导

  1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

  2.推导圆面积公式

  第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交*地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

  第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。

  第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

  3.小结

  让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

  4.阶段性练习

  a.看标有半径的圆,求面积。

  b.已知半径求面积。(练习时交待运算顺序。)

  (二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

  第三个环节:巩固练习

  对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

  第四个环节:布置作业。

  (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

  圆的面积说课稿(二)

  今天我说课的内容是九义教材人教版六年制小学六年级上册67——69页的内容:《圆的面积》。

  一、教材分析

  本节课是本册书第四单元第三节课。这节课是在学生充分认识了圆的各部分特征和掌握了圆的周长的计算的基础之上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱、圆锥的表面积及体积打基础。

  二、学生分析

  学生已经具有一定的学习能力,有进一步解决实际问题的欲望,学生已经掌握了用转化法推导几何图形面积公式的方法,通过本课的学习继续培养学生的动手操作能力、分析能力、探究能力以及迁移类推能力。本课学生通过合作探究应该能很顺利地掌握本课内容。

  三、教学目标

  知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。

  能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。

  情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  这节课,我以"猜想--估算--合作探究----验证"为主线,引导学生主动参与,在小组合作、动手探究的过程中学习,使学生在愉悦中体验成功的乐趣。

  四、教材处理

  由于学生初次接触曲线图形,很难理解圆等分后的转化过程和"极限"的概念,所以我确立本课的教学重难点是:圆面积公式的推导过程和圆面积的计算方法。

  为了突破教学难点,我引导学生在合作探究中经历观察、操作、推理、想象的过程,又借助教具和挂图直观性,在演示中进一步观察、体会,从而使不同层次的学生都得到了相应的发展。

  五、教学流程

  1、创设情境,导入新课。

  新课伊始,出示帮助公园的叔叔阿姨怎样计算这块圆形草坪的占地面积的问题的挂图。启发学生针对这个问题进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题。此处改变了原来设计的单调的复习,融新知于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

  2、合作学习,探究新知。

  为了帮助学生开展探究活动,第一步,我给每个小组发一张方格图,让学生在图上随意画一个圆,并估算出圆的面积。学生汇报后,激励学生评价哪种估算方法最好。这个环节目的就是使学生在估算的过程中自然而然地形成化曲为直的转化思想。

  第二步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。在这个环节,我让孩子们用桌子上的卡纸,做个实验,在硬纸画一个圆,把圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片,拼一拼,可以同桌合作,看能发现什么?一会向老师汇报。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

  第三步,学生汇报探究结果之后,为了使学生更直观、更形象的理解"极限"的概念,我适时进行教具演示,引导学生观察:把圆平均分成两份、四份、八份、十六份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。就这样,抽象难懂的"极限"的概念就在教具直观、形象的演示中迎刃而解了。

  然后,我又用教具演示拼成的长方形的长和宽与圆的各部分间的关系,学生很快地通过长方形面积的计算推导出圆面积的计算公式,从而顺利地完成知识的迁移。(出示填空练习题)

  在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

  3、巩固练习,拓展延伸

  为了进一步巩固学生对已学知识的理解和圆的面积公式的应用,在练习题的设计上,由浅入深,注重习题的实效性、趣味性。(教学挂图出示)首先让学生计算课前所剪圆形学具的实际面积,与估算结果相比较。然后设计了基本练习题和基本应用题。最后设计了趣味性较强的题:"早上,妈妈让聪聪上学时把牛拴在草地上,下午放学的时候再把牛牵回来,拴牛的绳子长4米,牛吃草的面积有多大?如果牛每小时吃草约8平方米,那么等下午聪聪回来的时候,牛会不会挨饿?如果牛挨饿的话,你有什么好办法解决呢?"故事一出,学生便主动思考,想办法,大大调动了学生的学习积极性,同时又把知识进行了延伸与拓展。

  4、巩固自学,提高能力

  在完成练习题后,让学生们看教材68——69页的内容,把不明白的内容和同桌互相探讨,共同解决。

  整个教学内容,我本着让孩子们自己动手操作、动脑思考、互相合作、发现问题、分析问题、解决问题的思路去设计,孩子们易于接受,学习气氛良好。加之老师制作的教具和挂图的配合,相信会收到较好的效果。

  圆的面积说课稿(三)

  一、说教材

  《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  本节内容是从一只小羊吃草的实例出发结合学生的生活经验引出圆的面积。学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

  二 、说教学目标

  1.知识目标:

  (1)引导学生通过观察了解圆的面积公式的推导过程

  (2)帮助学生掌握圆的面积公式,并能应用公式解决实际问题。

  2.能力目标:

  进一步培养学生合作探究,分析概括,以及迁移类推的能力。

  3.情感目标:

  通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、重难点分析

  本节课的重点是:圆面积概念的建立,公式的推导及应用。

  难点是:转化和极限两种数学思想的渗透。

  四、教法分析

  1.教法分析:

  针对小学六年级学生的年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生"同甘共苦"一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

  2.学法指导

  通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  3.教学手段

  为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

  五、教学过程

  1.复习(1)长方形面积公式

  (2)平行四边形面积公式

  平行四边形面积公式的求法是通过割补转化为长方形面积来解决。

  2.创设问题情景,引入课题

  利用课件出现一头牛拴在树下的牛在草地上吃草的图。并提问:"牛吃到草的最大范围是什么形状?这个范围有多大?"从而引出圆面积的课题。(板书课题:圆的面积)

  3.师生互动,探索新知

  (1)引导:

  平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?

  (2)合作学习,探究新知

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。学生汇报探究结果之后,(www.fwsir.com)为了使学生更直观、更形象的理解"极限"的概念,我适时进行课件演示,引导学生观察:把圆平均分成四份、八份、十六份、三十二份、六十四份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。就这样,抽像难懂的"极限"的概念就在课件直观、形象的演示中迎刃而解了。

  (3)得出结论:

  启发1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  启发2:长方形的长、宽与圆有什么关系呢?

  设圆的半径为r(再次演示课件)。

  启发学生寻找规律,由圆的周长为2πr,推导得出长方形长为πr,宽为r,

  圆的面积 .

  4.圆面积公式的应用。

  出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×102

  =3.14×100

  =314(平方厘米)

  答:它的面积是314平方厘米。

  例题2:一个圆的直径是40 米, 它的面积是多少平方米?

  40÷2=20(米)

  3.14×202

  =3.14 ×400

  = 1256(平方米)

  答:这个圆的面积是1256平方米。

  5.巩固练习。

  (1)半径2分米,求圆的面积。

  (2)圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)

  (3)绳长10米,问小狗的活动面积有多大?

  (4)发散思维:  如下图:  S正方形=3平方厘米, S圆=?

  o

  6.归纳小结

  为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。

  (1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

【圆的面积说课稿】相关文章:

《圆的面积》说课稿01-16

《圆的面积》数学说课稿04-20

“圆的面积”的教案08-16

《极限——圆的面积》08-16

圆的面积教学反思08-24

数学 - 圆的面积(一)08-16

圆、扇形、弓形的面积08-17

圆的面积教学反思01-25

数学圆的面积教案02-14

(精选)圆的面积教学反思07-08