圆锥的体积说课稿(精选16篇)
在教学工作者实际的教学活动中,总归要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么写说课稿需要注意哪些问题呢?下面是小编为大家整理的圆锥的体积说课稿,欢迎阅读与收藏。
圆锥的体积说课稿 1
我说课的内容是冀教版教材数学六年级下册第三单元“圆柱和圆锥”的第七课时----《圆锥的体积》,下面说一说我对这节课的想法。
一、说教材
(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标
1、知识目标:通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积
2、能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、情感目标:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
(三)教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的.倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说学情
六年级的学生已经积累了一定的学习经验和方法,如上学期学的圆的面积的推导过程和刚刚经历过的圆柱的体积的推导中所运用的转化的方法,这节课我想学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
三、说教学过程
口算(题卡)时间3-5分钟。
(一)、回顾旧知,引入新课
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。(学习圆柱时用的)
问题:
(1)已知底面积和高怎样求它的体积?
(2)已知底面半径、直径或周长又怎样求它的体积?
(这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。)
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。
(二)探究新知、推导公式
1、认识圆锥各部分的名称和特征(顶点(一个)、底面(一个圆)、侧面(展开是扇形)高(一条))引导学生猜想侧面展开是什么图形,自己动手验证。试着测量圆锥的高。
(2)教学圆锥体积公式
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
首先,教师出示等地等高的圆柱圆锥(课件出示)思考:
(1)用什么方法可以得到计算圆锥体积的公式?
(2)圆柱和圆锥等底等高是什么意思?
(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙子往等底等高的圆柱中倒和在圆柱中装满沙子往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。
第四、让学生做在小圆锥里装满水往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、个小组汇报、展示。
第六、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
四、利用新知、解决问题
1、填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。
3、只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
4、小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。
五、达标测评
1、让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习
六、全课总结,课外延伸。
让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。
总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.
圆锥的体积说课稿 2
一.说教材
1、说课内容
我今天教学的内容是圆锥的体积,圆锥是小学几何初步知识的最后一个教学单元中的内容,是在掌握了圆的周长、面积和圆柱的体积的基础上进行教学的。通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分的名称。理解求圆锥体积公式的计算公式,会运用公式计算圆锥的体积。圆锥体是人们在生产、生活中经常遇到的形体。教学这部分的内容,有利于进一步发展学生的
2、教学目标:
(1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)技能目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
(3)情感态度目标:渗透事物间相互联系的辨证唯物主义观点的启蒙教育。
3、教学重难点
(1)重点:理解和掌握圆锥的特征、体积的计算公式。
(2)难点:掌握圆锥高的测量方法和圆锥体积公式的推导过程。
二.说教法。
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三.说学法
根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四.说程序设计:
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的'主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了六个主要的教学程序是:
(一)复习旧知,课前铺垫
(二)提出质疑,引入新课
(三)动手操作,获得新知 。
(四)综合练习,发展思维
(五)课后小结,归纳知识
(六)作业布置,巩固新知
五.说教学过程:
(一)复习旧知,课前铺垫
1.怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高.
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正.
(二.)提出质疑,引入新课
.圆锥有什么特征?它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
(三)动手操作,获得新知
1.探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体.你们小组比比看,这两个形体有什么相同的地方?学生操作比较.
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”.
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系.
(3)学生分组做实验.
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下.
(老师在体积公式与“等底等高”四个字上连线.)
现在我们得到的这个结论就更完整了。(指名反复叙述公式.)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.
小结:今后我们求圆锥体体积就用这种方法来计算。
圆锥的体积说课稿 3
我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。
一、说教材
数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。是本单元的重点。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。
根据课程标准的要求,教材的编排特点,学生的'实际情况我确定的教学目标是:
1、情感目标:培养学生的探索精神、合作意识。
2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。
3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
难点:圆锥体积计算公式的推导过程。
关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
二、说教法
为了能够使学生在情境中学习数学,在活动中体验数学因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。
本节课把多媒体演示引进课堂,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
三、说学法
教法和学法是相互联系的,“教”是为了更好地“学”,教学中充分体现出学生的主体作用,尽量让学生自己动手实践、自己想、自己说,想不到的,教师要从不同角度启发、引导学生去想,去发现。创设一定的问题情境,让学生的整个学习过程围绕着问题去观察,去讨论,去实验,去理解,去总结。
古人说:“授人之鱼,只供一餐所需;而给人之渔,终身受用不尽。”新课程要求学生不仅要“学会”,更要“会学”。本节课采用适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我利用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学模式
本节课运用了小学数学情境———探究式教学模式。
(一)、创设情境、揭示问题
所谓的创设情境,就是指教师要在上课开始创设一种能调动学生先前经验,促进学生思维参与的探究氛围。本节课我创设了两种冰淇淋,怎么样买更合算的情景。这样做的目的,不只在于激趣,主要是让学生逐步形成一种数学的眼光,在面对现实问题时能够主动寻求用数学的方式来解决。
(二)探究发现,建立模型
这是学生构建新知识的重要一步,要帮助学生通过观察、实践、探索、思考、交流等活动、解释解决问题的基本策略,建立基本的数学模型。
1、直观引入,直觉猜想
在教学中,我首先让学生回忆,以前学过哪些物体的体积的计算,接着猜测圆锥可能与哪个物体的体积有关?再猜测他们之间存在着什么样的关系?这一环节目的是是为了让学生把已有的知识信息与新知识建立联系,为学生调整认知结构,构建新知识奠定基础。
2、实验探索,发现规律
这一环节是合作学习,引导学生分小组做实验总结出等底等高的情况圆锥的体积是圆柱体积的三分之一,最后根据圆柱体积的计算方法,引导学生试着总结圆锥体积的计算公式。这样,学生亲身经历、体验了知识的形成过程,从而使学生的思维能力、动手操作能力,总结概括能力,与人合作的意识都得到了提高。
3、启发引导,推导公式
这一环节首先让学生根据圆柱体积的计算方式推导出圆锥体积的计算方法,然后引导学生说一说,sh各表示什么?为什么要乘三分之一。这样使学生能更深入的理解。整个这一环节我一直本着引导学生主动建构知识的重要理念,引导学生通过自主探索、合作交流、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”。
(三)、理解应用,强化体验
因为学生在探究发现、建立模型中创造的数学知识,发现的数学方法,要有一个内化的过程,为了关注每一个孩子这一环节我设计的四个层次的练习。
【基本练习】
首先解决情境中的问题,到底买哪一种冰淇淋合算。然后计算圆锥冰麒麟和圆柱冰淇淋的体积。在计算圆锥冰淇淋的体积时,允许学生有选择的完成,这样对学生进行数量上和难易程度上的开放,不但关注了学困生,也促进了尖子升和特长生的发展。
【变式练习】
是一组判断题
【应用练习】
让学生解决生活中的问题。能够使学生对所学的知识再一次深化理解,并同时培养学生解决生活中问题的能力。
【综合练习】
把一个圆柱加工成一个最大的圆锥形零件。求削去的体积。
这是一道思维拓展题。首先引导学生独立思考,然后再解决问题,最后得出结论。这样,不但注重了新知识的结构化,而且使学生对知识得到进一步的拓展和延伸。
这样学生在应用中充分理解,加深了体验,使新建立的数学知识得到进一步强化。从而实现人人学习有价值的数学,不同的人在数学上得到不同的发展。
(四)、总结归纳,提升经验
这一环节主要引导学生对本节课的知识进行系统的归纳、还对探究发现的过程、方法、经验、进行了梳理。
在本节课的课后我布置了一项实践性的作业,让学生用硬纸板做一个圆锥,圆柱。要求是,圆锥和圆柱的体积相等。
操作实践是一个手脑并用的过程,是培养技能技巧,促进思维发展的一种有效手段。更是一种让学生继续获取知识的延伸性学习活动,能够提高学生的学习技能;培养学生的求知欲;巩固所学知识,扩大知识领域,并且产生知识迁移;培养学生的合作意识;让学生明白学习既没有时间限制,又没有空间限制,以培养学生良好的学习习惯。
五、说三生培养
在整个教学过程中,我力求照顾全体学生的学习感受,因材施教。学困生学习最基本的内容,优等生在达到课程标准要求的基础上,适当扩大知识面,拓展了思维。在教学中,简单的问题留给学困生,有难度的留给优等生,实验操作环节以强带弱,最后分层次练习,基本练习和变式练习,主要是关注学困生,同时也促进了尖子生的发展。应用练习和思维拓展主要是关注尖子生和特长生。从而使不同的学生在本节课得到不同的发展。
总之,本节课,以教材为主源,教师为主导,学生为主题,训练为主线,思维为核心,为了每个孩子的发展为宗旨,让学生在情境中学习数学,在活动中体验数学,这样,既重视了知识的形成过程,又重视了学生的思维的发展过程,是每个孩子都在获得新知识的过程中,提高了能力发展了思维。
这次教学大赛的要求是同题同构,目的是共同提高。我们六年组三个数学老师在选课上,备课上,制作课件中,到后来写教案设计,说课材料,真的是做到了合作。虽然是我们精心的准备了,但在教学中还是出现了很多的遗憾。
1、多媒体课件的制作和运用不是尽善尽美。
2、在三生培养中,对差生的关注不是很到位。
3、课堂中有浪费现象,造成了教学时间的紧张。
4、在小组合作中,学生的参与程度还有待提高。
在今后的工作中,一定要多听课、多学习、多研究、多总结、多反思、使今后四十分钟的数学课堂每一分都有效。
圆锥的体积说课稿 4
一.说教材。
圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。
根据教材内容,确定教学目标:
1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。
2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。
3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。
4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。
教学重点难点和关键:
1.重点:
(1)认识直圆锥并掌握它的一些特征。
(2)圆锥体的体积计算。
2.难点:
(1)圆锥体体积计算公式的推导。
(2)解答有关直圆锥体实物体积。
3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。
二.说教法和学法。
根据教材的内容和学生的年龄特征,我采用以下教法和学法:
1.直观操作,突破难点。
在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。
2.运用电脑课件的动感突出重点。
圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。
3.注意培养学生的发散性思维和创新意识。
创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思维和创新意识。
在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。
三. 说教学程序设计。
悬念引入。
首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)
探究新知。
1.圆锥的认识。
(1)圆锥的组成。
①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧面,一个底面)。]
②棱。提问:圆锥有几条棱?是什么样的一条棱?[教师板书:圆锥有一条棱(一条封闭的曲线)。]
③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一个顶点。]
④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。]
提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)
(2)圆锥的特征。
①一个底面是圆形。
②一个侧面展开图是扇形。(通过电脑演示得到。)
(3)指导学生看圆锥立体图。
2.圆锥体积公式推导。
(1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后的这一段是什么物体?这个圆锥是由什么物体削成的.?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)
(2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。
①教师演示圆柱和圆锥等底等高,并板书:等底等高。
教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,连续倒三次,圆柱体容器刚好倒满。
②指导学生四人小组做倒沙子实验。
四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什么关系。
(3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?
(教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)
教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。
(4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?
(教师板书:V=1/3 Sh。)
提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?
3、公式应用。
(1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?
学生口答,教师板书。
V=1/3Sh 板书后提问:1912是求什么?
=1/31912 如果不乘以1/3是求什么?
=76(立方厘米)
答 :(略)
(2)如果题目不告诉底面积,而是告诉底面半径是3厘米,怎样求圆锥体积。
学生练习,教师讲评(略)。
目的是培养学生的发散性思维和创新意识。
巩固练习。
1、求下列各圆锥的体积。
(1)底面积30平方厘米,高5厘米。
(2)底面半径4分米,高是3分米。
(3)底面直径12厘米,高是10厘米。
(4)底面周长31.4厘米,高6厘米。
2、
4
求下面各物体的体积。(单位:厘米)
12
9
5
目的是让学生运用所学的知识解决实际问题。
3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆锥体,圆锥体的体积是多少?削去的体积是多少?
通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力。
归纳小结。
通过这节课的学习,学生认识了圆锥体,掌握了圆锥体的体积计算方法,能解答有关实际问题,进一步发展了学生的空间概念和抽象思维能力。
四. 说板书设计。
圆锥的认识和体积计算
圆锥的组成: 计算方法:
面:(两个面) 棱:(一条棱) 圆柱体积公式:v=sh
顶点:(一个顶点) 高:(一条) 圆锥体积公式:v=1/3sh
例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米,求这圆椎的体积是多少?
学生口答,教师板书:(略)
这板书简明扼要符合大纲要求,体现了这节课的主要内容,突出了本节课重点和难点,便于学生学习和掌握,展现出承上启下、循序渐近的过程,围绕着圆锥体的认识和体积计算,概括出了明确的中心。
五. 几点说明。
根据直观性原则,引导学生观察、操作、实验、归纳、小结,认识圆锥体和体积计算公式。根据理论与实践相结合的原理,运用所学的圆锥体的体积计算公式解决实际问题。根据学生的认知过程循序渐近地布置一些练习,培养学生的空间思维,发散性思维和创新思维能力。
圆锥的体积说课稿 5
一、教材分析
教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。
二、学生基本情况
六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。
三、教学方法
由于本节课是立体图形(圆锥的体积)的'学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。
本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。
四、教学过程
本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。
紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。
然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。
学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。
最后,设计了三个巩固练习,都是在基本求出圆锥体积的基础上进行提高训练,这样即满足了基础知识的学习,又使优生能有所提高。
圆锥的体积说课稿 6
今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
“圆锥的体积”教学是在学生学习掌握了圆的周长、面积和圆柱的体积的基础上进行教学的,并且上节课初步认识了圆锥,本节教材内容突出了探索体积计算公式的过程,应注重发展学生的操作能力、实践能力、培养创新能力,为今后学生的深层次学习和自主发展打好基础。通过本节课的学习使学生掌握圆锥体积的推导公式以及运用公式解决一些实际问题。
2、学情分析
学生以前学习了长方体、正方体、圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。但对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,教师应帮助学生理解。
3、教学目标
根据教材的编写特点和意图,结合学生的认知特点,我把本课的教学目标确定为:
(1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
(3)情感目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握圆锥的'特征、体积的计算公式
教学难点:掌握圆锥高的测量方法和体积公式的推导过程
5、教具准备
多媒体、圆柱、圆锥、三角尺、直尺、水桶等
二、说教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法
教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。让学生在实际操作的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四、说教学程序
1、复习引入新课
怎样计算圆柱的体积?
(1)多媒体展示圆柱图形让学生计算(学生回答并计算)
说明:V圆柱=1/3V圆锥=1/3Sh,先复习圆柱体积计算方法,抓住所学知识的内在联系,为学习圆锥的体积计算方法进行铺垫
(2)多媒体演示圆柱体的一个底面逐渐变小直到剩一个点为止这是什么图形这个图形怎么得来的,怎么求它的体积?(学生回答教师并书写课题)
学生回答可能出现情况:(及时给于学生鼓励)
说明:设疑激趣,激发学生探求新知的欲望
2、动手操作获得新知
(1)根据学生的回答让学生利用已有的教具(等底等高的圆柱和圆锥)小组进行动手操作探讨体积公式——这样做的目的:激发学生学习的兴趣,培养学生动手的能力和合作的能力(教师在教室中来回走动注意观察学生的操作及脸部表情,及时给于指导)
(2)教师提问学生动手操作得出的结论
学生回答情况两种:三倍与三分之一的关系,如果没强调等底等高教师要及时补充,这样做的目的是让学生进行班内交流,从而让学生获得更多的解题方法
(3)通过教师引导学生能够完整的总结出圆锥体积的计算公式
教师板书圆锥体积计算公式:V圆柱=1/3V圆锥=1/3Sh
3、巩固练习
(1)让学生先来解决刚开始的那个由圆柱体转换而来的圆锥体的体积
说明:学生最先求过这个圆柱体的体积转换成的圆锥这个对于他们来说很容易,让学生学会了转换思想。然后继续出练习题
(2)多媒体展示出三个图形:
一题是书上的例题告诉底面直径和高的
二题是告诉底面周长和高的
三题是告诉底面半径和高的
说明:这样做的目的就是要让学生抓住知识的内在联系来解决实际问题,把教材前后知识相串联用活教材
4、拓展延伸
让学生小组合作测量教具中圆锥的体积并说出你的测量方法
说明:这样可以激发学生的动手能力、锻炼学生的思维能力和协调学生的合作能力(锻炼学生如何测量圆锥德高)教师走动引导学生,学生测量底面直径、底面周长的情况
5、学生总结这节课所学内容
五、说板书
我的板书简洁明了对整节课的学习起到画龙点睛的作用。
纵观整节课我通过创设情境、动手操作哦,调动学生的积极性,使学生最大限度的投入到观察、思考、操作、探究等活动中,亲身经历实践学习的过程。充分体现了新课程标准中提倡的“动手实践、自主探究、合作交流”的学习方式,让学生体验到学习成功的喜悦我的说课到此结束,谢谢!
圆锥的体积说课稿 7
【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】
圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】
圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的.知识教学,他们一定能表现出极大的热情。
【教学流程】
一、复习导入。
1、说出圆柱和圆锥各部分的名称及特征:
2、设疑:圆柱的体积公式用字母表示是(V=s h )。
圆锥的体积公式用字母表示是( ? )。
3、回顾圆柱体积计算公式的推导过程。能不能用转化的方法推导出圆锥的体积计算公式呢?
二、创设问题,实验探究。
准备两个容器,一个圆柱和一个圆锥,看看圆柱与圆锥的底和高各有什么关系?
用适量的水探究等底等高圆柱与圆锥的体积之间有什么关系?
分析归纳总结试验结论。
用字母表示出它们的关系。
三、实践运用,提升技能。
教学例题3.
四、练习巩固,提高能力。
1、口答题。
2、判断题。
3、拓展运用。
圆锥的体积说课稿 8
一、说教材
本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。
二、说教法
本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的`主体作用,又要调动学生积极主动地参与教学。
三、说学法
动手操作法,观察发现法,自主探究法,合作交流法
四、说教学过程
1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。
2、揭示课题,展示目标。
3、以旧引新,探究新知。
通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)
4、运用公式,解决问题
通过“算一算”和“试一试”让学生掌握公式的运用。
5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。
6、质疑问难,总结升华
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
圆锥的体积说课稿 9
一、说教材:
1、说课内容:
圆锥的体积。(小学六年级数学第十二册第二单元《圆柱和圆锥》中《圆锥》的第二课时)
2、教材简析:
圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。
3、教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
(3)德育方面:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
二、说教法:
教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程”。学生是学习的主体,因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:
以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。本节课引导并演示了两个实验。
第一、让学生比较圆柱和圆锥是否等底等高。
第二、在“等底等高”的条件下通过装水实验比较圆锥与圆柱的体积。使学生理解“等底等高”的条件下,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。
通过小组讨论、全班交流,归纳、推导出圆锥体积的计算公式:v=1/3sh。
教学准备:
多媒体课件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。因此我在讲求教法的同时,更重视对学生学法的指导。
1、学生学法:观察法、实验法、探索法。学生在学习圆锥体积公式的推导时,通过操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、在教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
利用复习圆柱、圆锥的认识和圆柱的体积公式及其应用,为新知识的迁移做好铺垫。
2、谈话激趣,导入新课。
很多同学都喜欢吃冰淇淋,你们看,冰淇淋的形状是什么样的'?你们想没想过一个圆锥筒能装多少冰淇淋呢?这就是这节课我们大家一起探究的内容。(板书课题)
3、实验操作,探究新知。
(1)通过引导,课件演示,学生观察,然后出示三个问题,让学生展开讨论:
问题一:刚才演示的圆柱、圆锥,它们有什么关系?
问题二:将空圆锥装满水往空圆柱里倒,倒了几次才能将空圆柱倒满?
问题三:你有什么发现?
(2)汇报交流:
圆锥的体积是与它等底等高圆柱体积的1/3,圆柱的体积是与它等底等高圆锥体积的3倍。
(3)师生共同归纳公式:圆锥的体积等于和它等底等高的圆柱体积的三分之一,即v=1/3sh(板书公式)
(4)强调:等底等高两个条件缺一不可。
4、尝试练习,巩固提高。
(1)想一想,议一议,说一说。
①、已知圆锥的底面半径r和高h,如何求体积v?
②、已知圆锥的底面直径d和高h,如何求体积v?
③、已知圆锥的底面周长c和高h,如何求体积v?
通过本题的尝试练习,让学生熟练掌握公式。
(2)运用所学知识解决实际问题。(指名学生板演)
(3)学习例3。让学生尝试自己讲,教师加以补充。
(4)反馈练习。
由圆锥体积的实际应用、填表格、判断、拓展题四部分组成,拓展题让学生采用多种解法,同时使学生懂得圆柱削成最大的圆锥,削去的体积是圆锥体积的2倍。
5、看书质疑,布置作业。
①通过这节课的学习,你学到了什么知识?
看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生自己去质疑,从而实现课内向课外的延伸。
②布置课堂作业:练习四的有关练习题。
圆锥的体积说课稿 10
一、说教材
圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。
教学目标是:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。
教学重点是:掌握圆锥体积的计算方法。
教学难点是:理解圆锥体积公式的推导过程。
二、说教法
根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。
三、说学法
本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学流程
为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
1、创设情境,提出问题
出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。
2、探索实验,得出结论
A、动手操作
把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。
B、观察猜想
观察、比较圆柱体与圆锥体。
突破知识点(1)“等底等高”;让学生猜测圆柱体积与它等底等高的圆锥体积的关系。
突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。
C、实验求证
学生动手实验,小组合作探究圆锥体积的计算方法。
(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;
(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;
(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。
通过学生演示、交流、讨论,得出圆锥体积的计算公式:
圆柱的体积等于与它等底等高的.圆锥体积的3倍;
圆锥体积等于与它等底等高的圆柱的体积的1/3.
圆锥体积=底面积×高×1/3
这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。
3、应用结论,解决问题
(1)以练习的形式出示例1。
例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
通过这道练习,巩固了所学知识。
(2)基础练习:求下面各圆锥的体积。
底面面积是7.8平方米,高是1.8米。
底面半径是4厘米,高是21厘米。
底面直径是6分米,高是6分米。
这道题是培养学生联
系旧知灵活计算的能力,形成系统的知识结构。
(3)出示例2。
在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
(4)操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
4、全课总结,课外延伸。
让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。
圆锥的体积说课稿 11
一、说教材:
1、本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第一单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2、例3,相应的“做一做”及练习四的习题。
2、本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
知识目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
二、说教法:
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的.体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
我在研究教法的同时,更重视对学生学法的指导。
1、实验操作法。
2、尝试练习法。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
(1)我们掌握了圆柱体积公式及其应用,并认识了圆锥,这节课,我们一起来学习圆锥的体积。(板书课题)
(2)圆锥体积和圆柱体积有什么关系吗?
3、实验操作,探究新知。
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
(1)在实验时,我提出了四个问题,让学生带着问题进行操作:
a比一比,量一量,圆柱和圆锥的底和高之间有什么关系?
b用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?
c通过实验你发现了什么?
d你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?
(2)学生汇报实验结果。说出圆锥体及计算公式。
(3)教师归纳公式,学生记忆公式。(板书结论和公式)
4、尝试练习,巩固提高。
(1)同时出示例2和例3。
①课件示例题,指名读题,说出已知条件和所求问题;
②分析题意。
③指名板演。
③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。
(2)巩固练习,形成技能,完成“做一做”。
这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。
5、看书质疑,布置作业。
通过这节课的学习,你学到了什么知识?还有什么疑问的吗?看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑答难,从而实现课内向课外的延伸。在完成了书上的基础练习之后,设计了三个发展练习,分别是知道半径和高;直径和高;周长和高;求体积,这样即满足了基础知识的学习,又使优生能有所提高。
以上是我对《圆锥的体积》一课的说课,如有不妥望各位老师给予帮助指导。
圆锥的体积说课稿 12
今天我说课的内容是九年义务教育六年制小学数学(人教版)第十二册第三单元“圆锥的体积”。下面将从教材分析、教法、学法、教学过程等四方面加以说明。
一、教材分析
1、教材的地位和作用
“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。
2、教学目标
(1)探索并掌握圆锥体积的计算方法
(2)经历观察、猜想、实验等过程,发展学生操作能力、归纳推理能力,培养创新精神。
(3)培养学生身主探索与合作交流的精神,渗透转化的数学思候和方法。
3、教学重点、难点
(1)重点:探索并掌握圆锥的体积的计算方法。
(2)难点:理解圆锥体积计算方法的推导过程。
二、教法
《数学课程标准》明确指出,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学和知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法|实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。
三、学法
古人说:“授人之鱼,只供一餐所需;而给人之渔,终身爱用不尽。”素质教育也要求学生装不仅“学会”,更要“会学”。这节课我将指导学生动手实验、合作交流、归纳推理、浓度尝试练习等方法,使学生成为数学学习的主人。
结合教法、学法,教具、学具准备有:
1、多媒体教学软件
2、多个空心圆柱、圆锥容器
3、装有水的水桶
四、教学过程设计
(一)观察发现
1、(电脑出示)一个圆柱体,提问:怎样计算圆柱的体积?
2、(电脑演示)把圆柱的上面逐渐缩小,一直缩小成一点,这时圆柱体就变成了一个圆锥体。提问:你有什么发现和想法?
3、板书课题
本环节由复习提问开始,以旧引新。电脑演示直观形象,动态地展现了变化过程,渗透转化的数学思想和方法。引导学生观察发现,大胆猜想,激发了学生的学习兴趣和强烈的探究欲望,为下面的推导圆锥的体积起到铺垫作用,从而自然导入新课。
(二)探究创新
这个环节分三个步骤进行。
第一步“实验操作”
学生迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。
1、各学习小组拿出准备好的一个圆柱体和A、B、C、D四个圆锥体(其中只有A、D与圆柱等底等高),分别用四个圆锥装满水倒入圆柱中,观察各要几次倒满,并把实验情况做好记录。提示思考“通过实验你发现了什么?
当学生发现A、D两个圆锥所用的次数不定时,设疑:A、D两个圆锥与圆柱有什么关系呢?
学生得出AD两个圆锥与圆柱等底等高。再次设疑:是不是所有的圆锥都是正好用三次就倒满面与它等底等高的圆柱呢?从而进入第二层实验。
2、各学习小组再拿大小不一、等底等高的圆柱与圆锥两对,用两个圆锥装满水后分别倒入与它等底等高的圆柱中,观察各要几次正好倒满。
3、这一步通过实验操作,既能培养学生观察、比较、分析及语言表达能力,更能学会与人合作、与人交流思维的过程和结果。实验没有像教科书那样直接给出一组等底等高的圆柱和圆锥容器,是因为那样操作,学生只是按现有程序演示了一下书本上的结论而已,既无发现,更无创新,反而容易忽视等底等高这一前提条件。没有用沙土而用水做实验,因为沙土颗粒之间有空隙,结果不十分准确。我设计的实验操作过程,与科学研究相类似,注重科学性、全面性,学生操作自由度大,有利于学生创新力的发挥,有利于创新能力的形成。
第二步:推导公式
1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流后达成共识“圆锥的体积是和它等底等高的圆柱体积的三分之一。
2、圆锥的体积怎样计算?计算公式是什么?根据学生的'回答板书:V锥=1/3 SH
本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,并突出教学重点。
第三步:尝试解题
1、学生阅读教科书刊42页内容,找出关键句、划出重点词。这样做是为了提高学生的数学阅读能力。
2、放手让学生尝试独立解答例1、例2,指名学生板示解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。
(三)应用深化
这个环节是把已抽象化了的概念应用到新折情境中去,是概念的复现和深化,主要以练习形式进行,具体设计如下:
1、基本练习
(1)判断对错。
(2)圆锥体积是圆柱体积的确良1/3。()
(3)圆柱体积等于与它等底等高的圆锥体积的3倍。()
(4)一个圆柱体积是45立方厘米,与它等底等高的圆锥体积是15立方厘米。()
(5)教科书43页“做一做”的1、2题。
2、综合练习
(1)一个圆锥底面周长是31.4厘米,高是12厘米。它的体积是多少立方厘米?
(2)一个底面积是12056平方厘米的圆锥体,这个圆锥体的底面积是多少?
3、思考讨论题
(电脑演示)工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。
练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生装的解题能力和技巧,运用所学知识解决实际问题的能力。
(四)回归评价
1、这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。
2、对自己和别人你有什么话要说?学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内动力。
3、布置作业:教科书44页第3题。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。
板书设计:(略)
这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,简洁明了。
圆锥的体积说课稿 13
一、教材分析
本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。
这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
二、学生情况
学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。
三、教学目标
根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。
知识目标:
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。
3、能运用圆锥体积的计算方法,解决有关实际问题。
能力目标:
培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。
情感目标:
能积极参加实验活动,培养学生探索的精神和小组合作的意识。
四、教学重、难点
重点:圆锥体积的计算。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历“小实验”活动,在活动中发现规律。
五、教法、学法
本节课,在教法和学法上力求体现以下两方面:
1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。
2、教学充分发挥学生的.主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。
六、教具准备
等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。
七、教学环节
环节一复习铺垫
回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。
环节二探索新知
首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。
探索圆锥体积计算方法。分为以下几个步骤完成。
步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。
步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。
步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。
圆锥的体积说课稿 14
各位领导、各位同仁:
大家好!
今天我说课的内容是冀教版小学数学六年级下册第35-36页。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
《圆锥的体积》教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装水的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。
2、学情分析
六年级的学生具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。
3、教学目标
知识与技能目标:引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,培养学生的观察,猜测、操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握公式,能正确运用公式解决实际问题
教学难点:圆锥体积公式的'推导过程
5、教具、学具准备
教具:一个圆柱、1个与圆柱等底、等高的圆锥、水;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺、沙子等
二、说教法
在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:
①、让学生测量比较自制圆柱、圆锥的高;
②、让学生用自制的等底等高、不等高等底圆柱与圆锥分别装沙实验入手。
通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:V= Sh,然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
三、说学法
以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。
新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。
针对本节,在学法上主要采取:
1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课的教学,我安排了5个教学程序:
1、激趣导入,设疑自探:
通过与学生关于买冰激凌的的对话,引导学生回忆圆柱体积的计算方法,提出圆锥的体积这一概念。
2、探索新知,解疑合探
小组合作,用自制等底等高、不等底等高的圆柱圆锥装沙子进行实验,从而得出等底等高的情况下,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一。推导出圆锥的体积公式V = S·h
3、运用公式,质疑再探
引导学生回到导入环节,运用总结出的公式计算圆锥形冰激凌的体积,解决买冰激凌的方案。然后出示圆锥形图片,给出直径和高,有学生自主解答,将知识进一步延伸。
4、课堂练习,拓展运用
由学生回顾整理本节课的主要内容,即圆锥的体积计算方法,同时引导学生加深对乘三分之一的记忆。
5、全课小结,布置作业
通过一些具有一定难度的练习题,使学生能够较好地运用圆柱与圆锥的关系,体会圆柱与圆锥之间只有在等底等高的情况下才有三倍的关系,合理布置本节课的作业,课下加深巩固。
五、说板书
板书内容力求醒目,字母公式使用彩色大字标示:
圆锥的体积
圆柱的体积=底面积×高
V = S·h圆锥的体积=圆柱的体积=底面积×高
圆锥的体积说课稿 15
各位领导、老师,你们好。今天我要为大家说课的内容是北师大版六年级数学下册第一单元——《圆锥的体积》。下面我从教材分析、教法选择、学法指导和教学过程等方面进行阐述。
一、教材分析
圆锥的体积是在学生已经掌握了圆柱体积计算及应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时的内容。圆锥是人们生产、生活中经常遇到的形体。教学好这部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
数学课程标准要求:教师是学生数学活动的组织者、引导者、合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。根据新课程标准的理念和教材特点以及学生的实际,我制定了如下的教学目标及教学重难点。
1、教学目标:
(1)理解圆锥体积公式的推导过程,掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积。
(2)培养学生的观察、理解能力、空间观念,应用所学的知识解决实际问题的能力。
(3)使学生在经历中获得成功的体验,体验数学与生活的联系。
2、教学重点:掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积以及解决一些实际问题。
3、教学难点:理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。
4、教具准备:
(1)多媒体课件。
(2)等底等高、等底不等高、等高不等底的圆锥和圆柱若干套,沙、实验报告单;带有刻度的直尺,绳子等。
二、说教法
我国著名教育家叶圣陶先生指出:教是为了用不着教。教学有法,但教无定法、贵在得法。依据新课程标准理念和教材特点以及学生的认知规律,这节课我主要运用以下教学方法。
1、复习引入法。通过复习长方体、正方体、圆柱体的体积计算公式和推导过程帮助学生温故知新,沟通新旧知识间的联系。
2、情景教学法。通过让学生猜测圆柱体积与圆锥体积的关系,诱发学生对猜测进行验证的情景,融知识性与趣味性为一体,以情激情、以情激趣、以情促知。
3、启发分析法。通过对三次实验结果的分析、比较,培养学生问题意识,启迪学生思维,发展学生智力。
并将自主探究的学习方式贯穿于教材的全过程。恰当运用多媒体教学手段增强教学的新颖性,从而激发学生参与学习的积极性,使他们在求知的学习状态中展示个性,体验到学数学用数学的乐趣。
三、说学法
教与学密不可分,教是为了更好的学。教法是学法的导航,学法是教法的缩影。著名教育家陶行知指出:好的先生不是教书,不是教学生,乃是教学生学。鉴于这样的认识,在强调教法的同时,更要注重学法的指导。本节课在学习过程中,我主要指导学生学会以下学习方法:
1、转化迁移的方法。通过复习圆柱体积的推导过程,使学生学会发现、扑捉知识间的内在联系,促进认知水平的形成和新知的内化。
2、比较分析的方法。通过对三次实验结果的比较、分析,拓展学生的视野,防止知识混淆,提高分析问题和解决问题的能力。
3、合作探究的方法。通过在分组做实验中同学之间的交互作用,树立团体意识,促进共同提高。
四、说程序
新课程把教学过程看成是师生交往、积极互动、共同发展的过程。根据新课程理念和
(一)创设情境,引发问题
出示长方体、正方体、圆柱体、圆锥体,问:
1、我们学过了哪些物体体积的计算方法?它们的计算公式各是什么?
2、圆柱的体积计算方法是怎样推导出来的?这节课我们就来学习圆锥的体积。(板书:圆锥的体积)
3、你认为哪一种物体体积的计算方法与圆锥有关?为什么?
4、猜测一下圆柱体积与圆锥体积有什么关系?(板书:v圆柱=3v圆锥?猜测)
(本环节通过创设圆锥体积与谁的体积关系更密切的情景,自然而然导入新课,吸引了学生的注意力,激发学生探索知识的积极性,为新课的学习做了良好的铺垫。)
5、怎样验证自己的猜测?(板书:验证)
(二)合作探索,解决问题
探索是数学的生命线,倡导探索性学习,引导学生经历知识的形成过程,是当前小学数学改革的理念。理解圆锥体积计算公式是本节课的重点,我设计了以下几个环节,让学生通过小组合作,自主探究、动手操作来发现圆锥的体积。
1、出示实验记录单
实验次数
选择一个圆柱和圆锥比较,我们发现
实验结果:它们体积之间的关系
第一次
第二次
第三次
2、师引导学生看懂实验单,按照实验记录单做实验,师巡视指导。
3、让学生介绍实验过程和实验结果。(去掉?)
4、问:做了3次实验,结果为什么不一样?
5、等底等高的圆柱体积和圆锥体积有什么关系?(板书:v圆锥=v圆柱=sh)
6、在这个公式中,s、h分别代表什么?Sh得到什么?为什么要乘?
7、求圆锥的体积要知道什么条件?
师小结:通过猜测、实验验证得出v圆锥=sh
(这样设计,让学生亲身经历知识的形成过程,在与同伴的交流、比较中不断完善优化自己的知识结构,通过自主探究、合作交流,突出重点,突破难点。)
(三)迁移应用,分层提高
练习是掌握知识、形成技能、发展智力的重要环节,根据学生的年龄特点和认知规律,由易到难,由浅入深,力求体现知识的纵横联系,我设计以下几组练习题,请看:
1、尝试解答
出示3组数据,让学生任选一组进行解答。
底面半径4厘米,高6厘米
底面直径4厘米,高5厘米
底面周长25.12厘米,高4厘米
解答完后,叫一名同学板书。
问:为什么都选底面半径和高?
小结:求圆锥的体积,先求出圆锥的底面积,再根据公式求出圆锥的体积。
2、例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(生独立列式计算全班交流)
3、判断
(1)圆锥体积等于圆柱体积的。
(2)圆柱体积大于与它等底等高的`圆锥体积。
(3)圆锥的高是圆柱的3倍,圆锥体积等于圆柱体积。
4、填空
(1)一个圆柱的体积是6立方米,与它等底等高的圆锥体积是()。
(2)一个圆柱和一个圆锥,底面半径和高都相等,圆锥的体积是18立方米,圆柱的体积是()。
(这个环节的设计,第1、2两题主要是突出本节课的重点,能运用体积公式计算圆锥的体积以及解决一些实际问题;第3、4两题是突破本节课的难点,理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。这些习题的设计,起到巩固提高的作用。体现数学来源于生活,运用于生活。)
(四)总结评价,激励发展
课堂总结是对本节课所学知识进行归纳和总结,以及对学生学习情况的评价,因此我设计了以下几个问题:
1、上了这些课,你有什么收获和体会?
2、你还有什么新的想法?还有什么问题?
(这样不仅能够帮助学生巩固新学的知识,完善知识结构,提高整理知识的能力,还能使学生体验到探索成功的的乐趣,树立学好数学的信心)
五、说板书设计
圆锥的体积
等底等高v圆柱=3v圆锥猜测
↓
验证
v圆锥=v圆柱/3=sh/3
板书设计力求体现知识性和简洁性,使学生一目了然,又起到画龙点睛的作用。
以上仅仅是我对这节课的整体设想和教学预设,在实际的教学过程中,我会十分重视课堂资源的生成情况,不断进行课中反思,及时调控教学过程,以达到最佳的教学效果。
圆锥的体积说课稿 16
教材分析:
1、内容编排
本节教材是九年义务教育小学数学(科教版)六年制第十二册第二单元《圆柱、圆锥和球》中《圆锥的体积》的教学。教学内容为圆锥体积计算公式的推导,例1、例2及相应的练习。
2、教材的地位和作用
本节教材是在学生已经掌握了圆柱体积的计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
3、重难点
重点:让学生理解、掌握并能正确运用圆锥体积的计算公式。
难点:圆锥体积公式的推导过程。
学情分析:
美国教育心理学家奥苏伯尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”本节课是学生在认识了圆锥特征的基础上进行学习的。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的“等底等高”这一条件,为了突现这一条件,要借助体积的关系不是3倍的实验器材,引导学生去粗取精,去伪存真,由表及里,层层逼近的过程进行深度信息加工。
目标定位:
1、通过实验,使学生理解并掌握圆锥体积的公式的推导过程,学会运用体积计算公式求圆锥的体积:
2、培养学生观察比较和实践操作能力,增强学生的思维能力和空间观念,并能运用所学的知识解决实际问题。
3、引导学生探索知识的内在联系,渗透转化的辩证唯物主义思想,培养交流与合作的团队精神。
教具准备:
等底等高的圆柱圆锥5套;不等底不等高,等底不等高,等高不等底的圆柱、圆锥各1套,染色水、细沙、实验报告表、课件。
教法运用:
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践,比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,采用以下几种教法。
1、采取设疑---思索---实验---观察---推导---归纳---应用的教学模式。
2、实验操作法
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律,性质和联系。”因此,我在学生已认识圆锥的基础上,设计一个实验,通过学生动手操作,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”,更让学生在实践中突现了“等底等高”加深了理解和体会。利用实验法,有助于发展学生的空间观念,培养观察能力,思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体操作过渡到内部语言。
3、比较法,讨论法,发现法三法优化组合。
学法分析:
“人人学有价值的数学,人人都获得必要的数学不同的人在数学上得到不同的发展。”这是新世纪数学课程的基本理念,新课程标准还强调引导学生主动参与,亲自实践,独立思考,合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的'同时,更重视对学生学法的指导。
1、 实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验时,着重引导学生在操作中比较、发现、总结。培养了学生观察、比较、交流合作、概括归纳等能力。
2、 尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种具大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在安排练习时,由易到难,让学生尝试自己独立解答,挖掘学生潜能,让他们体验学习成功的乐趣,调动学生的积极性和主动性,发挥学生的主体作用,激发他们的求知欲,养成良好的学习习惯。
教学过程:
一、复习旧知,铺垫孕伏
1、这是什么图形?生活中常常看到的(课件出示图片)圆锥有哪些主要特征呢?
2、复习圆锥的高
设计意图:
圆锥特征的复习简明扼要,为新知识迁移做好铺垫。
二、创设情境,引发猜想。
1、课件出示动画情境(伴图配音)
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小松鼠去:“动物超市”购物,在冷饮专柜熊伯伯那儿买一个圆柱形的雪糕。小松鼠刚张开嘴,满头大汗的猴子拿着一个圆锥形的雪糕一溜烟跑过来。(圆中圆柱和圆锥形的雪糕是等底等高的。)
2、引导学生围绕问题展开讨论。
问题一:猴子贪婪地问:“小松鼠,用我手中的雪糕跟你换一个,怎么样?(如果这时小松鼠和猴子换了雪糕,你觉得小松鼠有没有上当?)
问题二:(动画演示)猴子手上又多一个同样的大小的圆锥形雪糕。(小松鼠这时和猴子换,你觉得公平吗?)
问题三:如果你是小松鼠,猴子手中圆锥形的雪糕有几个时,你才肯和它交换?(把你的想法与小组的同学交流一下,再向全班同学汇报)
小松鼠究竟跟猴子怎样交换才算公平呢?学习了“圆锥的体积”后,就会弄明白这个问题。
设计意图:
数学课程要关注学生的生活经验和已有的知识经验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题,变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想,要猜想,乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
三、自主探索,操作实验
小学阶段学习几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。
1、出示思考题(请同学们带着问题去实验,明确目的)
(1)通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?
(2)你们小组是怎样进行实验?
2、小组实验
(1)学生分8组操作实验,教师巡回指导。
(2)同组学生进行交流,填写实验报告。
3、收集处理信息。说出自己的结论,并演示自己怎样做实验。
设计意图:
搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论,轻过程;重记忆,轻理解;重知识,轻能力的弊病。突出了教学重点。
3、 诱导反思。突出等底等高。
5、推导公式
6、问题解决。童话故事中的小白兔和狐狸怎样交换才算公平合理呢?它需要什么前提条件?(动画演示:等底等高)
设计意图:
圆锥体积公式的推导,我敢于大胆放手,让学生自主探索,经历“再创造”的过程。学生在老师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱和圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是交流体现得很充分,有学生与教师之间的交流,学生与学生之间的交流,以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的认知能力。
四、巩固发展,解决问题
1、教学例1
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
2、教学例2
在打谷场上有一个近似于圆锥形的小麦堆,测得底面周长是12.56米,高是1.5米,每立方米小麦约重750千克,这堆小麦约重多少千克?(得数保留整百千克)
3、引导小结:不要漏乘,计算时能约分的要先约分。
4、 巩固练习。出示五号:求圆锥体积
五、总结拓展,体验成功。
1、提升训练:
①把一个空心的圆锥慢慢放入等底等高且装满水的圆柱形容器里,剩下水的体积和圆柱体的体积有什么关系?
②回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕才公平合理,如果猴子只用一个圆锥形的雪糕和小松鼠交换,而不使小白兔吃亏,那么圆锥形雪糕应该是什么样的?配合用课件演示。
2、发散训练
①去年暑假,老师到海南旅游,那儿的风光可真美,就是天气太热,老师来到冷饮店,想买冰激棱,老板介绍有两种,一种是圆锥形的,1元1个,一种是圆柱形的2元1个,老师拿来比较了一下,它们是等底等高的,同学位,你们说老师买哪一种划算呢。
②生活中,有许多的东西是不规则的,比如怎样知道一个鸡蛋的体积呢?同学们,开动你们聪明的大脑,去探索吧?别忘了告诉老师!
设计意图:
根据新课程标准,使学生初步体会数学与自然及人类社会的密切联系,了解数学的价值,数学来源于生活,又应用于生活中。让学生拥有曹冲称象的智慧,亦不愧为最成功的教学。
评价反思:
1、摸得清、考虑周。能深入了解学生,对学生的认知水平、知识技能、情感态度,即学生起点能力分析得较清楚。设计教案时,能充分估计教学过程的复杂性。
2、理念新、设计巧。能利用《新课程标准》的理念处理教材、加工教材,如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情趣,并把这一故事情节贯穿整节课。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体,遵循了“现实题材——数学问题——教学模型——数学方法——解决问题——指导生活”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。
3、重建构、促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意义,这样刚刚建立起来的平衡施即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。多样化的数学活动,如设疑、实验、交流、反思、推理、问题解决,使学生的意义建构有了坚实的基础。学生情感在认知的过程中也得到了和谐发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。
4、在教学过程中一定还有一些不尽人意的地方,愿与大家共同学习。
【圆锥的体积说课稿】相关文章:
圆锥的体积说课稿07-09
圆锥的体积说课稿15篇11-13
圆锥和圆锥的体积08-16
圆锥的体积优秀说课稿(通用6篇)09-28
圆锥体的体积说课稿(通用7篇)09-28
圆锥的体积教学设计08-16
圆锥的体积教学反思04-19
《圆锥的体积》教学反思04-03
圆锥体积教学说课稿(通用6篇)09-28