五年级数学教案【推荐】
作为一位杰出的老师,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。快来参考教案是怎么写的吧!以下是小编为大家收集的五年级数学教案,仅供参考,希望能够帮助到大家。
五年级数学教案1
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
(2)认识负数的应用
教学内容:p.3、4的例3、例4,完成第5页的练一练和练习一的第7~10题
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。
学生举例(可能有的情况):
1、收入和支出:如果老师上个月的10日拿到1500元工资,为了强调“收入”,我可以这么记“+1500”,买衣服花了300元,可以怎么记?为什么?吃饭花了500元,怎么记?……
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
3、上车与下车:(第10题),依次写出每一站的情况,让学生说说每一站是什么意思?特别是“0”;还可以结合某一站,让学生说说“—3,+8”其实人数有什么变化?……
4、上楼与下楼:……
补充楼层,第下室的表示方法等。补充:楼房有正的`几楼,也有可能会有负的几楼,会不会有0楼?为什么?
5、向东走、向右走:常见的方向有4个,东和西是相反的方向,南和被也是一对相反的方向。如果把想东走5米,记作+5米,那么向西走10米,可以怎么记?你是怎么想的?+10米表示什么呢?为什么?
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
比较这个话题与前面话题的不同:前面的正负数一般都有增加或是减少的意思,而这个正负数,只表示相反的意思。……
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动面积是多少
教学内容:p.10~11
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
二、分一分、数一数:
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。
1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
取图3,交流数的方法:说说在数格子的时候你遇到了什么困难?是怎么解决的?最后结果是多少?
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
(1)、出示池塘图。观察该池塘边的特点,说说你想怎么求它的面积?有什么困难?有什么好办法吗?
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。
学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。
交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
五年级数学教案2
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的'小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升 的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3 )
②1升 = 1立方分米
1000毫升 1000立方厘米
1毫升(mL)=1立方厘米( cm3 )
练一练:
1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L
1.5dm3 =( )L
(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2 =40(立方分米) 40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
五年级数学教案3
教学内容:
书第54——55页,有趣的测量及试一试第1、2题。
教学目标:
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
教学重点:
用多种方法解决实际问题。
教学难点:
探索不规则物体体积的测量方法。
教学准备:
不规则石头、长方体或正方体透明容器、水。
教学过程:
一、导入新课
师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的.总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
作业设计:
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学教案4
教学内容
质数和合数
教材第14页的内容及练习四第1~3题。
教学目标
1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。
3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。
重点难点
重点:初步学会准确判断一个数是质数还是合数。
难点:区分奇数、质数、偶数、合数。
教具学具
投影仪。
教学过程
一、创设情境,激趣导入
师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?
师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?
学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。
二、探究体验,经历过程
1.认识质数与合数。
师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?
学生分组进行,找出之后进行分类。
生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。
师:很好,我们可以把它们分类,大家把分类结果填在表中。
投影展示学生的分类结果。
【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】
师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。
师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)
想一想:最小的质数(合数)是几?最大的呢?
师:所以按照因数个数的多少,自然数又可以分为哪几类呢?
课件出示:可以把非0自然数分为质数和合数以及1,共三类。
2.制作质数表。
投影出示例1。
师:怎样找出100以内的质数呢?
生1:可以把每个数都验证一下,看哪些是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的.质数表,使学生形成一个知识网络,进一步培养了学生的数感】
三、课末总结,梳理提升
这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。
板书设计
教学反思
1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。
2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。
五年级数学教案5
教学目标:
1、结合具体的情景,自主探索两位数乘两位数的乘法算法。
2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。
教学重点:
1、两位数乘两位数的估算。
2、探索并掌握两位数乘两位数(不进位)的乘法计算。
教学难点:
掌握两位数乘两位数(不进位)的乘法并能熟练计算。
教学理念:
组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。
教学准备:
课件。
学生准备:
预习课前知识。
教学过程:
一、实践调查
课前让学生在汇景新城作实地调查,调查本小区住户情况
二、课内交流
1、让同学们根据调查所得的.数学信息编一道数学应用题。
2、根据所编的题目独立列式
3、探讨和交流如何解决问题。
(1)尝试通过估算结果解决问题。
A、分组讨论不同的计算过程
B、师:根据以上的结果你能判断“这栋楼能住150户吗?”
(2)讨论算法
三、习题巩固:
1、试一试
11×4324×1244×21
2、练一练:
第1、2题
3、第3题,学生独立思考,理解题意,再进行计算
四、综合应用:
陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?
五、课堂总结:今天我们学习了什么知识?你学会了什么?
六、板书设计:
五年级数学教案6
教学目标:
1.使学生经历观察的过程,让学生认识到从不同的位置观察物体,所看到的形状是不同的。
2.能正确辨认从正面、侧面、上面观察到的两个物体的形状。
3.借助动手操作,发展学生的空间观念和同伴合作意识。
4.联系生活实际,使学生体会到数学知识来源于生活。
教学重点:
在实际的观察活动中,让学生认识到从不同的位置观察物体,所看到的形状是不同的。
教学难点:
能正确辨认从正面、侧面、上面观察到的两个物体的'形状。教具准备:长方体、正方体、球、圆柱等。
德育渗透:
帮助学生树立从小仔细观察事物,认真思考的好习惯。
情感与态度目标:
通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教学过程:
一、创设情境、激趣感知
比赛:快速抢答。下列照片中分别是什么?(师分别出示三组物体照片:电话、手机、手电筒。以下是一组图形照片。)
师:同样一个物体照片,为什么有的能一眼看出,有的却看不出?(板书课题:观察物体)
[良好的开端是成功的一半,创设学生喜欢的“猜一猜”引入,新颖有趣,充分的调动了学生的积极性,使学生立刻进入了学习的状态,让学生初步感知新知。]
二、师生互动、探究新知
(一)教学例1
1.引入:神探“冒险小虎队”的故事同学们知道吗?他们就是靠敏锐的观察力,破了很多大案。今天我们就一起去看看他们最近在忙些什么?(板书:观察)
[设计意图:运用课件动态演示,讲神探小故事,声色并茂,立刻能吸引学生的注意力。]
2.出示例1:一位专家刚刚研制出一种新药,他把新药放在小药箱里,可是有一天,他发现药不见了,是谁偷了药?
3.请学生从不同方向观察小药箱,问:你观察到什么?(分小组操作、交流。)
4.“冒险小虎队”找到四个犯罪嫌疑人,他们每个人看了一眼小药箱后说了一句话:
A 我看到的那一面上画了个红十字。
B 我看到的那面上写:小药箱。
C 我看到的是白色的面,没什么标记。
D 药箱相对的面颜色是一样的。
你认为谁说了谎话,为什么?(板书:推理)
[设计意图:引导学生通过观察进行推理,形成良好的思维习惯。]
5.如果前面为正面,其它面分别是什么面?如果右面为正面,其它面分别是什么面?
小结:物体的左、右、正面都是相对的。
6.填写观察实验报告:
从不同角度观察下面三个物体,把你从各个角度看到的形状画下来。
8.课间小歇:欣赏古诗《题西林壁》
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
[设计意图:让学生在优美的乐声中欣赏古诗,进行美育教育,体现数学与其它学科之间的整合]
(二)教学例2
1.引入例2。
神探“冒险小虎队”最近又在忙什么呢?某博物馆被盗了两件古董,被盗当天门窗都是锁好的。(形状如下)
2.出示例2。
(1)思考:他们谁是小偷?为什么?他们分别是从哪个方向上看到的?
(2)动手操作。
(3)汇报,小结。
三、巩固新知
4.画一画。
选择两个物体摆一摆,先确定一个面为正面,然后分别从上面、正面、左(右)面等角度观察所摆物体,在纸上画出所见到的形状。
5.猜一猜:展示作品,其它组同学猜猜这组物体是什么。
三、小结:
今天我们学会了从不同位置观察物体,还学会了推理。在生活中,我们处处都要留心观察,做一个勤于思考的好孩子,你们能做到吗?
[设计意图:这几个实际动手操作的练习的设计,不仅让学生巩固了本节课所学的知识,也让他们明白生活中处处有数学,提高了他们对学习数学的兴趣。]
五年级数学教案7
教学目标
1、结合具体活动情况,经历测量石块体积的实验过程,操索不规则物体体积的测量方法。
2、在实践与操索过程中,偿试用多种方法解决实验问题。
教学重点
操索不规则物体体积的测量方法。
教学难点
偿试用多种方法解决实际问题。
教具准备
量杯、石块
教师指导与教学过程
学生学习活动过程
设计意图
一、创设情况,引入新知
1、出示石块
问:如何测量石块的体积?
极书课题。
2、以小组为单位,先制高测量方案,再实实实际测量,能直接用公式吗?
不能怎么办?
三、进行实验
1、将石块取入盛有一高水的长方体容器里,测量出容器的底面长、宽和小面高分别是多少/
2、放入石块前水高约18cm,放入石块后水面高30cm。石块的体积是多少?
学生观察石块
想一想,如何测量石块的体积。
学生动手测量
水面高、底面长、宽分别是多少?
(老师测量的让学生量出来)
学生口算出水面升高了12cm.
生:底面积乘高是石块的体积。
并且列式计算
学生可以做实验,也可以由老师做,学生观察,并说如何测量出石块的体积的第二种方法。
创设情景
激发学生学习新知的兴趣。
引志学生操索与体会测量不规则物体的体积的方法。
引导学生小组合作,制高测量方案,并进行实验测量。
教师指导与教学过程
学生学习活动过程
设计意图
师板书:
20×10×12=2400(cm3)
=2.4(dm3)
3、将石块放入盛满水的容器里。
三、试一试
1、在一个长方体容嚣里,测量一个苹果的体积。
2、测量一粒黄正折体体积
学生根据题中的`二倍用“底面积×高”的方法计算。
放入石块前,容嚣里的水是满的,放入石堠后,溢出的水在水槽中,倒入量西湖里,有多少这亳升,就是石块的体积。
通过两个实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种,让学生运用在操索活动中得到测量的方法。
板书设计:
有趣的测量
小实验:测量石块的体积:小面高:30cm
底面长:20cm、宽10cm、高18cm30-18=12cm
底面积×高=体积200×12=2400(cm3)
20×10×18=3600(cm3)=2.4(dm3)
五年级数学教案8
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的.也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结
五年级数学教案9
单元教学目标:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学内容
小数乘以整数 课型 新授课
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的.练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3. 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
① 先把小数扩大成整数;② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
五年级数学教案10
教学目标
1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养中国学习联盟胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270÷(50+40).
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的`因积关系可得:
相遇时间=路程÷速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于“求相遇时间”应用题还有什么问题?
4.教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣.
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59.
活动过程
1.教师进行表演
2.学生探讨其中的奥妙
3.学生自己设计这样的几个游戏.
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.
六、板书设计
五年级数学教案11
课型:新授
教学内容:教材P5~6例3、例4及练习二第1、9题。
教学目标:
知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。
过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。
教学方法:观察、分析、比较。
教学准备:多媒体。
教学过程
一、复习引入
1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3
口算后提问:从14×3和1.4×3的口算中,你有什么发现?
2.列竖式计算。26×7 1.36×12 30.8×25
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。出示教材第5页例3的主题情境图。
师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)
师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。
师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:×0.8
生2:也可以把它们可作整数来计算(下左)。
师:那么如何求一共需要多少油漆呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)
所以一共需要1.728千克油漆。
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的两个因数中一共有几位小数?积呢?
生:两个因数中一共有2位小数,积也有2位小数。
2.探究小数乘法的计算方法。完成P6例4上面的填空。
(l)组织学生尝试完成教材第5页的“做一做”。
(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
(3)教学例4。 0.56×0.04
师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?
学生讨论,教师板书。
师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
师:观察黑板上各题,小组讨论。(出示讨论提纲。)
讨论提纲:①小数乘小数,我们首先怎样想?
(把两个因数的小数点去掉,转化为整数乘法。)
②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)
③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?
(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的'小数位数不够时,要在前面用O补足。)
3.根据上面的分析,想想小数乘法是怎样计算的?
学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。
生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。
教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.4 0.08×0.9 7.3×0.06
9.1×0. 03 0.25×0.23 45.9×3.5
提问:怎样判断积有几位小数?
2.用竖式计算。(教材第6页“做一做”的第1题)
提问:你是怎样计算0.29×0.07的?
3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。
师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。
师:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(O除外)乘小于1的数,积比原来的数小。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
作业:教材第8~10页练习二第1、9题。
板书设计:
小数乘小数
2.4×0.8=1.92 0.56×0.04=0.0224
1看、2算、3数、4点
五年级数学教案12
教学要求
1、根据正方体特征,推导出正方体表面积的计算方法。
2、学会解决实际生活中有关长方体和正方体表面积的计算问题。
3、培养学生思维的灵活性。
教学重点
正方体表面积的计算方法。
教学用具
教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的'面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习----正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6或者32×6
=9×6=9×6
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂小结。
学生小结今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
3、长方体和正方体的体积
五年级数学教案13
教学内容:分数与除法
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6 = 6 4÷5=0.8 80÷5=16
3÷7= 5÷10=0.5 4÷9=
然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个47 40÷47
饮料39瓶47 39÷47
花生8千克47 8÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= (b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的.除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13= =()÷()
()÷9= ()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b= (b≠0)
3÷4=(张)
答:每人分得张饼。
五年级数学教案14
教学目标:
1、理解除数是小数的除法可以转化成除数是整数的除法来计算的道理
2、掌握除数是小数除法的计算法则,并能运用法则进行正确的计算。
3、培养学生的概括能力。
教学重点:
把除数转化成整数后,利用除数是整数的除法来计算。
教学难点:
小数点的移动。
教具学具:
小黑板、卡片、幻灯。
教学过程:
一、复习:
(1)口算:(卡片)
8.1÷34.84÷40.56÷43÷5
1÷80.75÷150.25÷50.045÷9
如果要把一个数扩大10倍,100倍。1000倍小数点应怎样移动呢?出示(1.50.362.3752)
(3)完成表格:
┌————┬——┬——┬——┤
│被除数│15│150││
├————┼——┼——┼——┤
│除数│5│50│500│
├————┼——┼——┼——┤
│商│││3│
└————┴——┴——┴——┘
根据表格,观察被除数、除数和商之间有什么变化规律?
今天这节课我们就要运用这个规律来计算除数是小数的除法。
想一想,除数是小数,能不能把它转化成除数是整数的除法来计算呢?
二、新授:
1、出示例4、读题、审题、列式
56.28÷0.67
这道算式与前面学过的有什么不同?(除数是小数),能直接计算吗?能不能转化成除数是整数的除法来计算呢?
方法a把米转化成厘米计算。
方法b把除数和被除数同时扩大100倍。
(注:小数点和0要同时划去)
2、引导学生分组讨论:
a他们的计算方法有什么不同?
b哪一种方法更为实用?为什么?
0.6756.28
都扩大100倍利用左边的辅助竖式边提问边板书
讲清除除数转化成整数的过程。
675628
3、师生共同完成小林的计算方法后把答案填在课本上。
4、P20、做一做(1),先说出下面各题中的`除数和被除数需同时扩大多少倍,该如何移动小数点?然后再计算。
5、自学例5
思考:a除数是0.725变成整数,小数点必须向右移动几位?
b要使商不变,被除数10.44应怎样?小数点移动时位数不够这么办?
(生讲,师板书完成例5)
6、引导学生概括出除数是小数的小数除法计算法则。
除数是小数的除法,先移动()的小数点,使它变成();除数的小数点向()移动几位,()的小数点也向右移动几位,位数不够的,(),然后按照()进行计算。(生齐读)7、完成P20、做一做
三、巩固练习:练习五1至4。
五年级数学教案15
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。
提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?
(板书:同时出发、相向而行)
如果他们继续走下去,结果可能会怎样?
(相遇、不相遇就停下来、相遇以后相交而过)
结果究竟怎么样呢?请同学们继续观察。
电脑演示两人相遇。
(板书:结果相遇)
谁能完整的说说他们是怎样运动的?
[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。
(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?
(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。
我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。
走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分
讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。
小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的?
提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的同学说说你的解题思路又是什么?
[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的'概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?
(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5
相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。
(59页做一做第1题)
2、只列式不计算。(练习十三1、2题)
学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]
四、闯关游戏,拓思创新:
电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?
提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?
提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]
【五年级数学教案】相关文章:
五年级数学教案09-29
小学数学教案五年级12-14
五年级教案数学教案12-27
五年级上数学教案01-14
五年级数学教案08-20
五年级上册数学教案11-13
人教版五年级上数学教案11-18
苏教版五年级数学教案02-07
五年级《分数的意义》数学教案08-29
【推荐】五年级数学教案11-28