现在位置:范文先生网>教案大全>数学教案>高三数学三角函数复习教案

高三数学三角函数复习教案

时间:2023-07-21 06:57:48 数学教案 我要投稿

高三数学三角函数复习教案(优秀)

  作为一名教学工作者,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?下面是小编精心整理的高三数学三角函数复习教案,仅供参考,希望能够帮助到大家。

高三数学三角函数复习教案(优秀)

高三数学三角函数复习教案1

  函数的教案

  一、教材分析及处理

  函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

  对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念。其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

  教学重点是函数的概念,难点是对函数概念的本质的理解。

  学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

  二、教学三维目标分析

  1、知识与技能(重点和难点)

  (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

  (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

  (3)、掌握定义域的表示法,如区间形式等。

  (4)、了解映射的概念。

  2、过程与方法

  函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

  (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

  (2)、面向全体学生,根据课本大纲要求授课。

  (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

  3、情感态度与价值观

  (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识。

  (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

  三、教学器材

  多媒体ppt课件

  四、教学过程

  教学内容教师活动学生活动设计意图

  《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

  知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

  思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接

  新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的.掌握知识

  函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

  注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

  习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

  映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

  小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

  五、教学评价

  为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

  在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

  虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

高三数学三角函数复习教案2

  【高考要求】:三角函数的有关概念(B).

  【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

  理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

  【教学重难点】: 终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

  【知识复习与自学质疑】

  一、问题.

  1、角的概念是什么?角按旋转方向分为哪几类?

  2、在平面直角坐标系内角分为哪几类?与 终边相同的角怎么表示?

  3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

  4、弧度制下圆的弧长公式和扇形的面积公式是什么?

  5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

  6、你能在单位圆中画出正弦、余弦和正切线吗?

  7、同角三角函数有哪些基本关系式?

  二、练习.

  1.给出下列命题:

  (1)小于 的角是锐角;(2)若 是第一象限的角,则 必为第一象限的角;

  (3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

  (5)相等的角必是终边相同的角;终边相同的角不一定相等;

  (6)角2 与角 的.终边不可能相同;

  (7)若角 与角 有相同的终边,则角( 的终边必在 轴的非负半轴上。其中正确的命题的序号是

  2.设P 点是角终边上一点,且满足 则 的值是

  3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB长=

  4.若 则角 的终边在 象限。

  5.在直角坐标系中,若角 与角 的终边互为反向延长线,则角 与角 之间的关系是

  6.若 是第三象限的角,则- , 的终边落在何处?

  【交流展示、互动探究与精讲点拨】

  例1.如图, 分别是角 的终边.

  (1)求终边落在阴影部分(含边界)的所有角的集合;

  (2)求终边落在阴影部分、且在 上所有角的集合;

  (3)求始边在OM位置,终边在ON位置的所有角的集合.

  例2.(1)已知角的终边在直线 上,求 的值;

  (2)已知角的终边上有一点A ,求 的值。

  例3.若 ,则 在第 象限.

  例4.若一扇形的周长为20 ,则当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?最大面积是多少?

  【矫正反馈】

  1、若锐角 的终边上一点的坐标为 ,则角 的弧度数为 .

  2、若 ,又 是第二,第三象限角,则 的取值范围是 .

  3、一个半径为 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是 弧度或角度,该扇形的面积是 .

  4、已知点P 在第三象限,则 角终边在第 象限.

  5、设角 的终边过点P ,则 的值为 .

  6、已知角 的终边上一点P 且 ,求 和 的值.

  【迁移应用】

  1、经过3小时35分钟,分针转过的角的弧度是 .时针转过的角的弧度数是 .

  2、若点P 在第一象限,则在 内 的取值范围是 .

  3、若点P从(1,0)出发,沿单位圆 逆时针方向运动 弧长到达Q点,则Q点坐标为 .

  4、如果 为小于360 的正角,且角 的7倍数的角的终边与这个角的终边重合,求角 的值.

高三数学三角函数复习教案3

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标

  1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

  四、教学重难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的'长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

  (2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x)接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解例1:下列函数中,y是x的一次函数的是( )

  ①y=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

【高三数学三角函数复习教案】相关文章:

高三数学三角函数复习教案01-15

高三数学一轮复习教案11-04

数学复习教案01-27

高三语文的复习教案11-12

数学总复习教案01-09

高三数学一轮复习教案4篇01-29

高三数学一轮复习教案5篇11-05

高三数学一轮复习教案(5篇)11-06

高三数学复习工作计划01-17

数学复习教案15篇01-27