现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-06-14 17:53:37 七年级数学教案 我要投稿

七年级数学上册教案(精选)

  作为一名默默奉献的教育工作者,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编帮大家整理的七年级数学上册教案,欢迎阅读与收藏。

七年级数学上册教案(精选)

七年级数学上册教案1

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的.规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学上册教案2

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的.正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

七年级数学上册教案3

  【学习目标】

  1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。

  2、理解什么是一元一次方程。

  3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】

  体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。

  【导学指导】

  一、温故知新

  1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?

  答:叫做方程。

  一元一次方程复习

  注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果.对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧.

  解一元一次方程常用的技巧有:

  (1)有多重括号,去括号与合并同类项可交替进行

  (2)当括号内含有分数时,常由外向内先去括号,再去分母

  (3)当分母中含有小数时,可根据xx分数的基本性质xx把分母化成整数

  (4)运用整体思想,即把含有未知数的代数式看作整体进行变形

  (三)实际问题与一元一次方程

  1.用一元一次方程解决实际问题的一般步骤是:

  (1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)

  (2)根据数量关系与解题需要设出未知数,建立方程;

  (3)解方程;

  (4)检查和反思解题过程,检验答案的正确性以及是否符合题意,并作答.

  2.用一元一次方程解决实际问题的典型类型

  (1)数字问题:①数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为xx100a+10b+cxx(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9).

  ②用一个字母表示连续的自然数、奇数、偶数等规律数.

  (2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”

  《第三章一元一次方程》精编导学

  3.1从算式到方程

  【学习目标】

  1、知道什么是方程,什么是一元一次方程;

  2、在实际问题中,能够找到并利用题中的等量关系列出方程.

  【重点难点】

  重点1.归纳方程、一元一次方程的概念;

  2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

  难点:能够用方程解决一些实际问题。

  【学法指导】

自主探究、合作学习

  【自主学习,基础过关】

  1. (1)3+b=2b+1 (2)4+x=7

  (3) 0.7x=1400 (4)2x-2=6

  请大家观察上面4个式子有什么共同特点?

  从而得到:xxxxxxxxxxxxxxx的等式叫做方程。

  2.阅读课本78页问题,你能用算术方法解答吗?试一试。

  若设A,B两地间的路程是x km?则从A地到B地,卡车用了小时,客车用了小时。根据题意,可列出等式吗?

  还有其他的解法吗?试着改变一种设法。

  我的疑惑

  【合作探究,释疑解惑】

  1.根据下面实际问题中的数量关系,设未知数列出方程:

  ①用一根长为48cm的铁丝围成一个正方形,正方形的边长为多少?

  ②某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

  ③练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元。问:小明买了几本练习本?

  小结:像上面①、②、③中列出的方程,它们都含有xxxxx个未知数(元),未知数的`次数都是xxxxxxx,这样的方程叫做一元一次方程。

  (即方程的一边或两边含有未知数)

  【检测反馈,学以致用】

  1.根据条件列出等式:

  ①比a大5的数等于8:

  ②某数的30%比它的2倍少34:

  ③27与x的差的一半等于x的4倍:xxxxxxxxx

  ④比a的3倍小2的数等于a与b的和:

  2.列方程解决实际问题

  (1)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长,宽各应是多少?

  (2)小芳种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到1米?

  【总结提炼,知识升华】

  1、学习收获

  2、需要注意的问题

  【课后训练,巩固拓展】

  1、必做题:教科书80页练习1,2,3,4题;

  2、悬赏题(2个优)

  鸡兔同笼,上有20头,下有52足,请问鸡兔各有多少只?

七年级数学上册教案4

  教学目标

  1.会利用合并同类项的方法解一元一次方程;(重点)

  2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)

  教学过程

  一、情境导入

  1.等式的基本性质有哪些?

  2.解方程:(1)x-9=8; (2)3x+1=4.

  3.下列各题中的两个项是不是同类项?

  (1)3xy与-3xy;  (2)0.2ab与0.2ab;

  (3)2abc与9bc; (4)3mn与-nm;

  (5)4xyz与4xyz; (6)6与x.

  4.能把上题中的同类项合并成一项吗?如何合并?

  5.合并同类项的法则是什么?依据是什么?

  二、合作探究

  探究点一:利用合并同类项解简单的一元一次方程

  例1解下列方程:

  (1)9x-5x=8;

  (2)4x-6x-x=15.

  解析:先将方程左边的同类项合并,再把未知数的系数化为1.

  解:(1)合并同类项,得4x=8.

  系数化为1,得x=2.

  (2)合并同类项,得-3x=15.

  系数化为1,得x=-5.

  方法总结:解方程的.实质就是利用等式的性质把方程变形为x=a的形式.

  探究点二:根据“总量=各部分量的和”列方程解决问题

  例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

  解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.

  解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).

  答:黑色皮块有12个,白色皮块有20个.

  方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.

  三、板书设计

  1.用合并同类项的方法解简单的一元一次方程.

  解方程的步骤:

  (1)合并同类项;

  (2)系数化为1(等式的基本性质2).

  2.找等量关系列一元一次方程.

  列方程解应用题的步骤:

  (1)设未知数;

  (2)分析题意找出等量关系;

  (3)根据等量关系列方程;

  (4)解方程并作答.

  教学反思

  本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.

七年级数学上册教案5

  教学目的:

  1.知识与技能

  体会有理数乘法的实际意义;

  掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。

  2.过程与方法

  经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。

  通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

  3.情感、态度与价值观

  通过类比和分类的思想归纳乘法法则,发展举一反三的能力。

  教学重点:

  应用法则正确地进行有理数乘法运算。

  教学难点:

  两负数相乘,积的符号为正。

  教具准备:

  多媒体。

  教学过程:

  一、引入

  前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.

  问题一:有理数包括哪些数?

  回答:有理数包括正整数、正分数、负整数、负分数和零.

  问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?

  回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.

  计算下列各题;

  以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.

  二、新课

  我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。

  如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。

  1.正数与正数相乘

  问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (+2)×(+3)=+6

  答:结果向东运动了6米.

  2.负数与正数相乘

  问题二:如果蜗牛一直以每分2cm的`速度向左爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (-2)×(+3)=(-6)

  3.正数与负数相乘

  问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为

  (+2)×(-3)=-6

  4.负数与负数相乘

  问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为

  (-2)×(-3)=+6

  5.零与任何数相乘或任何数与零相乘

  问题五:原地不动或运动了零次,结果是什么?

  答:结果都是仍在原处,即结果都是零,若用式子表达:

  0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

  综合上述五个问题得出:

  (1)(+2)×(+3)=+6;

  (2)(-2)×(+3)=-6;

  (3)(+2)×(-3)=-6;

  (4)(-2)×(-3)=+6.

  (5)任何数与零相乘都得零.

  观察上述(1)~(4)回答:

  1.积的符号与因数的符号有什么关系?

  2.积的绝对值与因数的绝对值有什么关系?

  答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.

  由此我们可以得到:

  两数相乘,同号得正,异号得负,并把绝对值相乘.

  (1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:

  口答:确定下列两数积的符号:

  例题:计算下列各题:

  解题步骤:

  1.认清题目类型.

  2.根据法则确定积的符号.

  3.绝对值相乘.

  练习:

  1.口答下列各题:

  (1)6×(-9);(2)(-6)×(-9);

  (3)(-6)×9;(4)(-6)×1;

  (5)(-6)×(-1);(6)6×(-1);

  (7)(-6)×0;(8)0×(-6);

  (9)(-6)×0.25;(10)(-0.5)×(-8);

  注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.

  2.在表中的各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:

  3.计算下列各题:

  (1)(-36)×(-15);(2)-48×1.25;

  4.填空:

  (1)1×(-5)=____;(-1)×(-5)=____;

  +(-5)=____;-(-5)=____;

  (2)1×a=____;(-1)×a=____;

  (3)1×|-5|=____;-1×|-5|=____;

  -|-5|=____

  (4)1+(-5)=____;(-1)+(-5)=____;

  (-1)+5=____.

  三、小结

  (1)指导学生看书,精读乘法法则.

  (2)强调运用法则进行有理数乘法的步骤.

  (3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.

  四、作业

  1.计算:

  (1)(-16)×15;(2)(-9)×(-14);

  (3)(-36)×(-1);(4)13×(-11);

  (5)(-25)×16;(6)(-10)×(-16).

  2.计算:

  (1)2.9×(-0.4);(2)-30.5×0.2;

  (3)0.72×(-1.25);(4)100×(-0.001);

  (5)-4.8×(-1.25);(6)-4.5×(-0.32).

  3.计算:

  4.填空:(用“>”或“<”号连接)

  (1)如果a<0,b>0,那么,ab____0;

  (2)如果a<0,b<0,那么,ab____0;

  (3)当a>0时,a____2a;

  (4)当a<0时,a____2a.

  板书设计

  1.4有理数的乘法

  法则:练习

  教学设计思路

  本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。通过对实际问题的解决,引入有理数的乘法法则。在讲解运动的例子时运用现代化教学手段,把图形中的“静”变“动”,增强了直观性,初步培养想象能力。

  教学反思

  强调学生与教师一起共同参与教学活动,我们坚持把教学活动过程体现在教学中,又激发学生的思维积极性,让学生学会分析问题和解决问题。

七年级数学上册教案6

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的'是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

七年级数学上册教案7

  学习目标:

  1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛

  2、数学思考:体会数学符号与对应的思想。

  3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

  重点:进一步理解正、负数及零表示的量的意义。

  难点:理解负数及零表示的量的意义。

  课前准备

  卷尺或皮尺

  教学流程安排

  活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。

  活动2、活动安排 使学生进入问题情境,加深对负数的理解。

  活动3、举例说明 提高解决实际问题的能力。

  活动4、巩固练习 掌握正数和负数。

  教学过程设计

  活动1

  1、 给出一组数,请学生说说哪些是正数、负数。

  2、 学生举例说明正、负数在实际中的应用。

  师生行为及设计意图

  通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。

  活动2

  1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

  2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的`长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)

  师生行为

  1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。

  2、各小组派一名同学汇报完成的情况。

  设计意图

  通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。

  活动3

  问题展示

  1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。

  2、 20xx年 商品进出口总额比上年的变化情况是:

  美国减少6.4%% , 德国增长1.3%,

  法国减少2.4% , 英国减少3.5%,

  意大利增长0.2 %, 中国增长7.5%,

  师生行为及设计意图

  在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。

  活动4

  1、 P6 练习

  2、 总结:这堂课我们学习了那些知识?你能说一说吗?

  3、 作业 P7习题1 .1 4、7、8

  师生行为及设计意图

  教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。

  教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

  学生课后巩固、提高、发展。

七年级数学上册教案8

  教学内容:

  小学数学六年级下册P112-113练习二十二1~7题。

  教学目标:

  1.通过练习,进一步掌握统计与概率的相关知识。

  2.能解决统计与概率相关的简单实际问题。

  3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。

  重点、难点:

  1.掌握统计与概率的基本知识和方法。

  2.灵活应用统计与概率的相关知识解决实际问题。

  教学准备:

  教学挂图,小黑板,自主检测题等。

  教学过程

  一、情境引入,回顾再现

  1.回顾统计与概率的相关知识。

  组织学生简单回忆,说一说:

  本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。

  2.揭示课题。

  师:那么这节课我们就来对本部分知识进行练习。

  板书课题:统计与概率练习

  二、分层练习,强化提高

  (一)基本练习。

  1.

  (1)该公司去年全年的销售情况如何?

  (2)该公司的发展前景怎样?

  (3)你还能提出哪些问题?

  ①组织学生独立解答.

  ②汇报订正,说解题思路。

  教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。

  2.

  ①组织学生独立解答.

  ②汇报订正,说解题思路

  教师注意提醒学生考虑事件发生的等可能性以及几率的多少。

  (二)综合练习。

  ①组织学生独立解答第一小题。

  ②小组交流讨论,解答第二小题。

  师根据学生的汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  本题是有关众数的应用的练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的'列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的变化。研究一组数据的频数大小分布情况时,应用了众数的知识。

  (三)提高练习。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  六(2)班同学的血型情况如图,

  (1)从图中你能得到哪些信息?

  (2)该班有50人,各种血型有多少人?

  本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。

  三、自主检测,评价完善

  自主检测

  1.填空:

  (1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )

  (2)( )统计图可以清楚地表示出各部分同总数之间的关系。

  (3)( )统计图既能表示出数量的多少,又能反映出数量变化情况

  2.选择:

  (1)评价一个班整体学习成绩情况,看( )比较合适?

  A.平均数B.中位数C.众数

  (2)为了清楚地表示出20xx年各月平均气温变化情况,应绘制( )。

  A.条形B.折线C.扇形

  3.做一做:

  有A—J 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。

  (1)你认为这个游戏规则对双方公平吗?对谁有利?

  (2)请设计一个双方公平的游戏规则。

  四、课堂总结

  1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。

  2.学生谈收获:通过本节课练习你有什么新的收获?

  板书设计:

  统计与概率练习

  统计表

  统计图:条形统计图;折线统计图;扇形统计图

  统计量:平均数;中位数;众数

  可能性:等可能;公平;

  作业设计

  基础:

  1.简单的统计图有( )统计图、( )统计图和( )统计图。

  2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。

  3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。

  4.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)

七年级数学上册教案9

  一、教学目标

  1。理解一个数平方根和算术平方根的意义;

  2。理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3。通过本节的训练,提高学生的逻辑思维能力;

  4。通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1。已知一正方形面积为50平方米,那么它的边长应为多少?

  2。已知一个数的平方等于1000,那么这个数是多少?

  3。一只容积为0。125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空

  1。()2=9;2。()2 =0。25;

  5。()2=0。0081。

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0。5是0。25的平方根;

  0的平方根是0;

  ±0。09是0。0081的平方根。

  由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  ()2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1。一个正数有两个平方根,它们互为相反数。

  2。0有一个平方根,它是0本身。

  3。负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的`运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:1。用正确的符号表示下列各数的平方根:

  ①26②247③0。2④3⑤

  解:①26的平方根是

  ②247的平方根是

  ③0。2的平方根是

  ④3的平方根是

  ⑤的平方根是

七年级数学上册教案10

  一:说教材:

  1教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  3教育目标

  (1)、知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)、过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)、情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  4教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二:说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三:说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四:师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五:说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1全年哪几个月是亏损的?哪几个月是的`盈利的?

  2各月亏损与盈利情况又如何?

  3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

  盈利多少?

  6你能将亏损情况与盈利情况用算式列出来吗?

  (5)通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

  (三):归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六:说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

七年级数学上册教案11

  垂线

  [教学目标]

  1。理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

  2。掌握点到直线的距离的概念,并会度量点到直线的距离。

  3。掌握垂线的性质,并会利用所学知识进行简单的推理。

  [教学重点与难点]

  1。教学重点:垂线的定义及性质。

  2。教学难点:垂线的画法。

  [教学过程设计]

  一。复习提问:

  1、叙述邻补角及对顶角的定义。

  2、对顶角有怎样的性质。

  二。新课:

  引言:

  前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

  (一)垂线的定义

  当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  如图,直线AB、CD互相垂直,记作,垂足为O。

  请同学举出日常生活中,两条直线互相垂直的实例。

  注意:

  1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

  2、掌握如下的推理过程:(如上图)

  反之,

  (二)垂线的画法

  探究:

  1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

  2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

  3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

  画法:

  让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

  注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

  (三)垂线的.性质

  经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

  性质1过一点有且只有一条直线与已知直线垂直。

  练习:教材第7页

  探究:

  如图,连接直线l外一点P与直线l上各点O,

  A,B,C,……,其中(我们称PO为点P到直线

  l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

  性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

  简单说成:垂线段最短。

  (四)点到直线的距离

  直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  如上图,PO的长度叫做点P到直线l的距离。

  例1

  (1)AB与AC互相垂直;

  (2)AD与AC互相垂直;

  (3)点C到AB的垂线段是线段AB;

  (4)点A到BC的距离是线段AD;

  (5)线段AB的长度是点B到AC的距离;

  (6)线段AB是点B到AC的距离。

  其中正确的有()

  A。 1个B。 2个

  C。 3个D。 4个

  解:A

  例2如图,直线AB,CD相交于点O,

  解:略

  例3如图,一辆汽车在直线形公路AB上由A

  向B行驶,M,N分别是位于公路两侧的村庄,

  设汽车行驶到点P位置时,距离村庄M最近,

  行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

  练习:

  1。

  2。教材第9页3、4

  教材第10页9、10、11、12

  小结:

  1。要掌握好垂线、垂线段、点到直线的距离这几个概念;

  2。要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

  3。垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

七年级数学上册教案12

  【学习目标】

  1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化.

  2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点.

  【导学提纲】

  梳理本知识:

  1. 基本概念

  2.位置关系 .

  3.相关图形的性质.

  (1)线段和直线的有关性质:

  (2)余角、补角、对顶角的有关性质:

  (3)平行和垂直的有关性质:

  4.基本作图.(尺规作图)

  (1)作一条线段AB等于线段a;

  (2)作 等于 .

  5.分类思想.

  【反馈矫正】

  1.完成本p172页复习题第1、2、3、4、5、7、8题

  2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.

  3.如果 与 互补, 与 互余,则 与 的关系是( )

  A. = B.

  C. D. 与 互余

  4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分.

  5.如图,OE是∠AOD的平分线,OF⊥OD,垂足为O,

  ∠EOF=19°,求∠AOD的度数.

  【迁移拓展】

  完成本p172页复习题第9、11、14题

  【堂作业】本p172页复习题第6、10题

  整式

  题2.1 整式时本学期

  第 时日期

  型新授主备人复备人审核人

  学习

  目标(1)了解单 项式 及单项式系数、次数的概念;

  (2)会准确迅速地确定一个单项式的系数和次数。

  重点

  难点重点:单项式及单 项式的系数、次数的概念;

  准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立

  流程师生活动时 间复备标注

  一、导入新

  回顾:先填空,再请说出你所列式子的运算含义。

  1、边长为x的正方形的周长是 。

  2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。

  3、 如图正方体的表面积为 ,体积为 。

  4、设n表示 一个数,则它的相反数是

  看前图,尝试回答3 个问题

  在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的'式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础

  二、新授

  1、自学第54--55页,回答下列问题

  完成思考的4个问题

  什么是单项式,单项式的系数,次数?举例说明

  归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。

  注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。

  完成56页练习1

  2、自学第55页例题,回答 下列问题

  独立完成例题,后订正答案

  同一个式子表示的意义是否相同?

  归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。

  3、完成56页练习2

  三、堂达标练习

  59页习题1

  四、堂小结

  1、单项式、单项式系数、单项式次数的概念

  2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?

七年级数学上册教案13

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的`周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学上册教案14

  教学内容:

  人教版小学数学教材六年级下册第107~108页例2及相关练习。

  教学目标:

  1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

  2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

  重点难点:

  探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

  教学准备:

  教学课件。

  教学过程:

  一、直接导入,揭示课题

  同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

  【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

  二、探索发现,学习新知

  (一)教师与学生比赛算题

  1.教师:你知道等于多少吗?(学生:)

  教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

  2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

  在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

  3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

  【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

  (二)借助正方形探究计算方法

  1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

  2.进行演示讲解。

  (1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

  想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

  (2)继续演示,谁知道除了通分,还可以怎么算?

  根据学生回答,板书。

  (3)演示:那么计算就可以得到?()。

  3.看到这儿,你发现什么规律了吗?

  4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

  5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

  6.尝试练习

  【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的'联系,让学生体会到数形结合、归纳推理的数学思想方法。

  (三)知识提升,探索发现

  1.感受极限。

  (1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

  (2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

  (3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

  (学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

  2.利用线段图直观感受相加之和等于“1”。

  (1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

  (2)学生看书思考。

  (3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

  【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

  3.课堂小结。

  对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

  教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

  4.举一反三。

  其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

  【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

  三、练习巩固

  1.基础练习。

  (1)学生独立计算。

  (2)全班交流反馈。

  【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

  2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

  解决问题

  (1)全班读题,学生独立思考。

  (2)指名回答。

  (3)根据学生回答情况,连线(课件演示)。

  (4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

  【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

  四、课堂总结

  快下课了,请你来说说这节课有什么收获?

  课后反思:

  图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

七年级数学上册教案15

  教学目标:

  1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

  2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

  教学重点:

  深化对正负数概念的理解.

  教学难点:

  正确理解和表示向指定方向变化的量.

  教与学互动设计:

  (一)知识回顾和理解

  通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

  [问题1]:“零”为什么既不是正数也不是负数呢?

  学生思考讨论,借助举例说明.

  参考例子:用正数、负数和零表示零上温度、零下温度和零度.

  思考“0”在实际问题中有什么意义?

  归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

  如:水位不升不降时的水位变化,记作:0 m.

  [问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

  (二)深化理解,解决问题

  [问题3]:(课本P3例题)

  【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

  【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,

  法国减少2.4%,英国减少3.5%,

  意大利增长0.2%,中国增长7.5%.

  写出这些国家这一年商品进出口总额的增长率.

  解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

  巩固练习

  1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

  2.让学生再举出一些常见的具有相反意义的量.

  3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

  中国减少866,印度增长72,

  韩国减少130,新西兰增长434,

  泰国减少3247,孟加拉减少88.

  (1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

  (2)如何表示森林面积减少量,所得结果与增长量有什么关系?

  (3)哪个国家森林面积减少最多?

  (4)通过对这些数据的分析,你想到了什么?

  阅读与思考

  (课本P6)用正数和负数表示加工允许误差.

  问题:1.直径为30.032 mm和直径为29.97 mm的'零件是否合格?

  2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

  (三)应用迁移,巩固提高

  1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.

  2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

  3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

  星期一二三四

  增减-5 +7 -3 +4

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  类比例题,要求学生注意书写格式,体会正负数的应用.

  (四)课时小结(师生共同完成)

【七年级数学上册教案】相关文章:

数学七年级上册教案04-16

湘教版数学七年级上册教案01-09

[优]数学七年级上册教案06-13

七年级上册数学教案12-16

数学新七年级上册教案模板01-24

七年级上册数学教案01-19

七年级上册数学教学教案06-01

七年级数学上册教案01-11

七年级数学上册教案06-13