现在位置:范文先生网>教案大全>数学教案>数学六年级下册《圆锥的体积》教案

数学六年级下册《圆锥的体积》教案

时间:2024-10-26 12:07:20 数学教案 我要投稿

人教版数学六年级下册《圆锥的体积》教案

  作为一名教师,总归要编写教案,教案是备课向课堂教学转化的关节点。那么应当如何写教案呢?下面是小编帮大家整理的人教版数学六年级下册《圆锥的体积》教案,仅供参考,大家一起来看看吧。

人教版数学六年级下册《圆锥的体积》教案

人教版数学六年级下册《圆锥的体积》教案1

  第3单元 圆柱与圆锥

  2.圆锥

  第2课时 圆锥的体积

  教学目标

  1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式。

  2、能熟练运用公式正确地计算圆锥的体积,并能解决实际生活中有关圆锥体积计算的简单问题。

  3、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  教学重难点

  重点:理解圆锥体积公式的推导过程。

  难点:熟练运用圆锥体积公式解决实际问题。

  教学过程

  一、复习引入

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新知探究

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

  板书:

  2、教学练习六第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  3、巩固练习:完成练习六第4题。

  4、教学例3。

  (1)出示题目:已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第34页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  三、巩固练习

  1、做练习六的第7题。

  学生先独立判断这三句话是否正确,然后全班核对评讲。

  2、做练习六的第8题。

  (1)引导学生思考回答以下问题:

  ①这道题已知什么?求什么?

  ②求圆锥的体积必须知道什么?

  ③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习六的第6题。

  (1)指名学生先后回答下面问题:

  ①圆柱的侧面积等于多少?

  ②圆柱的表面积的含义是什么?怎样计算?

  ③圆柱体积的计算公式是什么?

  ④圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  四、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  教学反思

  在教学“圆锥的'体积”时,我首先从实物图形讲解到空间图形,采用对比的方法, 不断加深学生对形体的认识。然后要学生用自己的学具自己动手做实验, 从实验的过程中得出结论: 等底等高的圆锥体体积 是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一 种水到渠成的感觉。然后, 利用公式解决生活中的实际问题,加深学生印象。新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发 学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥 的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

人教版数学六年级下册《圆锥的体积》教案2

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1、2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

  ②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

  ③圆锥的底面积是3.1m2,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的`圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1、2

【数学六年级下册《圆锥的体积》教案】相关文章:

六年级数学下册《圆锥的体积》教案优秀08-28

《圆锥的体积》数学教案(精选11篇)10-17

北师大版六年级数学下册《圆锥的体积》教案11-20

小学六年级数学《圆锥的体积》教案09-02

人教版六年级数学圆锥的体积教案02-27

小学六年级数学《圆锥的体积》教案【集合】05-26

[必备]小学六年级数学《圆锥的体积》教案05-23

(热门)小学六年级数学《圆锥的体积》教案05-26

(荐)小学六年级数学《圆锥的体积》教案05-25

圆锥的体积说课稿05-15