新课程理念下课堂设问情境创设的策略
新课程理念下课堂设问情境创设的策略
育英高中 李菊华
[内容摘要] 问题是数学的心脏,数学教学就必须精心设计数学问题,给学生创设可望、可及且有利于学生建构的问题情境,激发学生学习的兴趣,激发学生的认知内驱力,引发学生合理的认知冲突,促进学生自主学习,提高学习效率。
[关 键 词] 新课程 创设课堂设问情境
《普通高中数学课程标准》(以下简称新课标)指出:“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程” 。 传统的教师讲、学生听,导致学生被动接受知识,很大程度上阻碍了学生的主动参与,限制了学生的思维活动及相应能力的培养和形成。从过去的旧观念下的那种“满堂灌”,到现在部分教师的“满堂问”都存在着严重的问题。“提出问题比解决问题更为重要(爱因斯坦)”,所以提问不是简单的教师提、学生答,而应该更多的引导学生相互提问。学生只有参与教学实践,参与问题探究,才能建立起自己的认知结构,才能灵活地运用所学知识解决实际问题,才能有所发现、有所创新。下面笔者就在数学教学实践中如何设问有利于学生自主学习,提高学习效率,谈一些做法,以期抛砖引玉。
一、 创设情境在引人中设问,激发学生兴趣
从数学学习的认知本质看,数学学习离不开情境。事实上,学生学习知识的过程本身是一个建构的过程,无论是对知识的理解,还是知识的运用,都离不开知识产生的环境和适用的范围。新课标强调让学生在现实情境和已有的生活、知识经验的基础上学习和理解数学,“问题—情境”是数学课程标准倡导的教学模式。它包含两层含义:首先是要有“问题”,即当学生利用已有的认知还不能理解或者不能正确解答的数学问题,当然,问题的障碍性不能影响学生接受和产生兴趣,否则,至少不能称为好问题;其次是“情境”,即数学知识产生或应用的具体环境,这种环境可以是真实的生活环境、虚拟的社会环境、经验性的想象环境,也可以是抽象的数学环境等等。因此,在新课的引入过程中,教师要对教材内容进行二次开发,精心创设问题情境,通过教师的适当引导,使学生进入最佳的学习状态,同时还要激活学生的主体意识,充分调动学生的积极性、主动性和创造性,使学生最大限度地参与探究新知识活动,让学生在参与中感受成功的兴奋和学习的乐趣,促使学生全身心地投入学习,注意把知识内容与生活实践结合起来,精心设问。那么,创设引人问题情境的基本策略是什么呢?如何在引人中设问呢?
1、引疑激趣策略
教育近代教育学家斯宾塞指出:“教育要使人愉快,要让一切教育有乐趣”。乌辛斯基也指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望”。因此,教师设计问题时,要新颖别致,使学生学习有趣味感、新鲜感。
案例1:“二分法”的引入
在央视由著名节目主持人李泳主持的“非常6+1”中有一个栏目叫“竞猜价格”,你知道如何才能最快速度猜准价格吗?
“一石激起千层浪”学生纷纷议论,趁机我又设计了一个小游戏:同位同学相互合作猜生日,看那一组能用“最少的次数”猜出对方同学的生日?你共用了多少次?
通过创设趣味性的问题情境,增强了学生的有意注意,调动学生学习的主动性和积极性,激发了学生学习的求知欲和学习数学的兴趣。
2、设置坡度策略
心理学家把问题从提出到解决的过程称为“解答距”。并根据解答距的长短把它分为“微解答距”、“短解答距”、“长解答距”和“新解答距”四个级别。所以,教师设计问题应合理配置几个级别的问题。对知识的重点、难点,应象攀登阶梯一样,由浅入深,由易到难,由简到繁,已达到掌握知识、培养能力的目的。
案例2:已知函数 ,
(1)它是奇函数还是偶函数?
(2)它的图象具有怎样的对称性?
(3)它在( )上是增函数还是减函数?
(4)它在(- ,0)上是增函数还是减函数?
上述第(3)、(4)问的解决实际上为偶函数在对称区间单调性的关系揭示提供了一个具体示例。在这样的感性认识下,接着可安排如下训练题:
(1)已知奇函数 在[ ]上是减函数,试问:它在[ ]上是增函数还是减函数?
(2)已知偶函数 在[ ]上是增函数,试问:它在[ ]上是增函数还是减函数?
(3) 奇、偶函数在关于原点对称区间上的单调性有何规律?
根据“解答距”的四个级别,层层设问,步步加难,把学生思维一步一个台阶引向求知的高度。在面对这样一个题目时,学生心理已经有了准备,不会感觉到无从下手。同时上一个问题解决也为一般结论的得出提供了一个思考的方向。这样知识的掌握的过程是一种平缓的过程,新的知识的形成不是一蹴而就的,理解起来就显得比较容易接受,掌握起来就会显得更加牢固。
3、巧设悬念策略
悬念是一种学习心理的强刺激,使学生产生“欲罢不能”的期待情境,能引起学生学习的兴趣、调动学生的思维和引发求知动机。
案例3:今天以后的 天是星期几?这样的问题唤起了学生对二项式定理应用的浓厚兴趣。通过在学生的认识冲突中提出问题导入新课,使学生产生“欲知而后快”的期待情境,以激起不断探求的兴趣,既唤起学生对知识的愉悦,又唤起学生参与的热情。事实上,现阶段所使用的新教材在每一章的引言均有这样的设置。同时,教材增加了不少与现实联系十分紧密的内容,为数学教师提供了宽广的知识平台,为新课引人的设问创造了有利的条件。
4、以形助数策略
华罗庚说过:“数缺形时少直观,形少数时难入微”。数形结合是研究数学的重要方法,“以形助数”是数形结合的主要方面,它借助图形的性质,可以加深对概念、公式、定理的理解,体会概念、公式、定理的几何意义
案例4:已知函数 是定义在R上的奇函数,当 时, 。画出函数 的图象,并求出函数的解析式。
学生在完成此题的过程中,通过作图,找到特殊点,然后再确定 时的解析式。显然他们并不会满足于这样“拄着拐杖走路”,很希望能脱离函数图象这一中介的辅助,“脱离拐杖而独立行走”。于是他们会问(或者老师启发)若不作函数图象,能求出 的解析式吗?在完成此题目的基础上他们也许还会尽一步发问:此方法可以推广吗?对一般的奇函数也适用吗? 若 为偶函数又该怎么处理?经过这样一连串的发问,那么该题目的解决过程就显得丰满、充实。达到了以点带面、把“薄书读厚”的目的,这样知识的升华就显得润物细无声。
5、联系实际策略
新课标指出:“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,数学来源于生活,并对生活起指导作用,在数学教学中教师应根据生活和生产的实际而提出问题,创设实际问题情境,使学生认识到数学学习的现实主义,认识到数学知识的价值,这样也更容易激发学生的好奇心和兴趣,培养学生的主体意识。在我们身边有许多数学问题,如银行分期付款、商品打折、最优化等经济问题;市政建设与环保问题;时政新闻;计划决策问题;广告的可信度问题等等。
案例5:某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止.结合风速与时间的图象,回答下列问题:
(1)在y轴( )内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x 25时,风速y(千米/时)与时间x(小时)之间的函数关系式.
(面对实际情境,教师给予引导,根据所给条件,建立一次函数模型,步步深入,最终转换到不等式,解决问题)。
总之,在新课引人时的问题情景一方面应是学生关心的话题,能激发学生的学习积极性,另一方面应使学生迫切想知道如何运用所知识解决问题,能唤起学生的求知欲。其次,注意问题的趣味性。趣味性的知识总能吸引人,趣味性的问题总能引发学生对问题的探究和深层次的思考。在新课引人时,多为学生提供一些数学史或其它有趣的知识,既能激发学生的学习兴趣,又能扩大学生的知识面并在穿插数学史介绍的过程中,加强对学生数学思想的渗透和数学文化的浸润,让学生在东西方数学文化观的对比中,感受到数学理性精神对人类进步的伟大作用,从而提高学习数学的兴趣。
二、 在探究过程中设问,引导学生主动参与,提高课堂教学效率
从数学课程及数学学习的特点看,情境化设计愈来愈显示出重要性和必要性。首先,数学的现代发展表明,数学与社会的联系越来越紧密,它渗透于人们生活的多个层面;其次,数学学习的核心是学会数学的思考,掌握数学的思想方法。数学情境化设计能生动地揭示数学知识的发生发展过程,并引导学生在这一过程中掌握数学思想方法,解决基于某种情境之中的数学问题,从而逐步体会数学的本质。第三,长期以来,特别是在完全以应试为目标的传统教学中,数学教学走入一种定势:过分依赖学科纯形式化的逻辑结构和概念命题系统,知识的逻辑过程完全等同于课堂教学过程,学生所学的数学与现实分离开来。更为极端的做法是,即使是在学科系统内部的教学,也省去了一些必要的过程,仅就解题的技巧进行强化训练,学生不知道数学知识从哪里来,又能到哪里去。这种状况严重阻碍了学生数学素养的提高。
建构主义学习理论认为:新知识的学习都是在学生已有知识经验基础上进行的。因此,新知识的学习都必须通过主体的积极参与,才能将新知识纳入已有的认知结构。在新知识教学中,为了让学生积极主动的参与到教学活动中去,精心的设问是关键。在数学学习中,具体的解题方法非常多,各种方法都有其适用性和局限性,如果我们只是简单地追求一题多解,那样学生最了不起也只是一个“卖油翁”的境界──唯手熟尔。更何况,学生的在解决习题中的很多方法,虽然很多时候也成功了,但靠“碰”、靠“撞”的现象还是经常存在的,所以,我们还需对各种数学方法对比分析。
案例6:在教学等差数列求和公式学习时,本节课要解决的问题就是Sn的表达式。学生已有的知识──等差数列的概念、通项公式和性质,为了让学生积极主动地将新知识纳入已有的认知结构,设计下列问题:
问题1、1+2+3+…+100=?这是学生小学就已具备的高斯求和知识,学生可以解决。
问题2、能否用上述方法解决等差数列的Sn?从特殊到一般Sn=( + )+( )+…
问题3、( + )=( )=…是否成立?
问题4、按上述匹配法,可分多少组?教师分析,学生思考后,注意结合n的特值,容易得出:取决于n的奇、偶性。
问题5,从上述结论Sn=( + )* 类似于哪个公式?S梯形如何求得?引例中的钢管数如何求得?类似地能否求Sn。──归纳出数列求和的一种重要方法:倒序相加。
三、 在范例教学中设问,促进学生自主学习,提高课堂教学效率
“范示”本就是数学素养之一,范例教学更是学生获得新知的重要途径,因此,在范例教学中,注重设问,挖掘问题本质,使学生在自觉、主动,深层次的参与过程中,以已有的知识和经验为基础,主动建构自己的知识结构,实现再现、理解、创造和应用,在学习中学会学习,提高数学课堂教学效率。
案例7:在学习了等比数列基本知识后,为了加深学生对等比数列概念和性质的理解,可设计一个常规问题:已知:等比数列{an}中Sn=16,S2n=64,求S3n=?
问题1、本题与前面涉及的问题是否相同、相似及相关?解决数列问题的基本方法是什么?
问题2、能否利用等比性质,即:an=am.q n-m(n≥m)将am后面的项转化为a1,a2,…am表示,沟通未知和已知的联系?
问题3、由题意,易求此数列的依次的每m项的和,这些和看作一个数列,是什么数列?能否将问题转化为一个新数列求项的问题。
问题4、我们知道数列是一种特殊的函数,能否从函数角度考虑本问题。
即∵Sn= -1(qn-1)∴(qn,Sn)在直线y= -1(x-1)上
∴点(qm,Sm),(q2m,S2m),(q3m,S3m)三点共线。
故可从斜率相等人手,求出S3m。
通过上述方式,让学生在问题的引导下探究问题的解决方法,一方面让学生将知识融会,进一步理解知识及内在联系,另一方面让学生学会根据问题的特点,学会从多角度的思考、联想、寻找各种思路,有助于培育思维的广阔性和探究问题的良好习惯,增强自主性。
四、 在课堂小结中设问,有助于课后的自主学习,提高课堂教学效率
课堂小结在课堂教学中往往起着提纲契领,画龙点睛的作用,它通常是本节课的基础知识和思想方法及关键点。如果教师直接小结,哪怕“字字珠玑”,其结果往往是“平平淡淡”。因此,小结时,教师精心设问,有助于学生主动认清所学知识的本质,理清所学知识的脉络,使知识系统化,同时,更有助于学生课后的主动学习;教师可提出一个或一系列的问题,以一种悬念性,有助于学生课后主动探讨;当前后两节知识内容联系紧密,为了下节课的教学,可提出一些与后一节课有关的具有启发性的问题,这些问题让学生一方面巩固本节课的知识,另一方面让学生感到似乎是熟悉的,能解决的,但又不太清楚,不能立即解决,从而产生跃跃欲试的感觉。另外,也可以在小结时,将问题引向更深入的问题,有助于优生课后的自主学习第 6 页 共 8 页。还有,我们更应当考虑教师不作小结,由学生来作小结,然后同学补充,最后由教师点评,甚至于还可以让部分课堂根本就不要小结,而将小结这项工作留为学生课外作业,让学生们各自课外独立完成小结后,再由教师集中整理,留待后面的课堂中完成。
总之,设问的目的不是“灌水”,而是为学生的思维“点火”。古希腊一位智者说过:“人脑不是一个可以灌注的容器,而是一只可以点燃的火把。”所以,课堂上的设问,应该是将现实生活中的数学素材、学生已有的数学知识和能力、数学文化发展史中的史料、数学教材中的数学内容等多方面的数学素材的自然结合,让学生们真切感受到数学“现实真理性”与“模式真理性”的双重价值,这样自然就能点燃学生的“智慧火种”,从而为学生的自己学习提供生存环境。将精心设问贯穿在课堂教学的各个环节,教师的知识传授与学生的学习在疑问中开始,探索、论证、小结、发展,则学生的思维习惯得以养成,求知的热忱得以激发,学习兴趣得以培养,思维品质、能力得以全面发展。精心设问,刺激学生心智不断向前追求,主动探索,自主学习,全面提高数学课堂教学效率。
【新课程理念下课堂设问情境创设的策略】相关文章:
创设问题教学情境 打造高效物理课堂04-25
谈初中地理课堂情境的创设策略08-25
创设问题情境 优化语文导学案05-05
新课程理念下的高效美术课堂08-19
创设问题情境培养学生自主学习能力论文06-01
试谈新课程理念下的课堂教学模式08-24
创设有效情境,精彩数学课堂08-20
小学作文教学中“模拟情境”创设的策略研究08-21
新课程理念下如何构建高效英语课堂08-21