现在位置:范文先生网>心得体会>教学反思>《二次函数》教学反思

《二次函数》教学反思

时间:2024-07-19 07:43:15 教学反思 我要投稿

《二次函数》教学反思

  作为一名优秀的教师,课堂教学是重要的工作之一,写教学反思能总结我们的教学经验,教学反思我们应该怎么写呢?以下是小编为大家收集的《二次函数》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《二次函数》教学反思

《二次函数》教学反思1

  前天,教学了《二次函数》的第一课时。课堂上学生活跃的思维、积极的发言、大家争抢着回答问题说明学生的学习是有效的。从中,我感到了教学的魅力,更感到这样的魅力是需要教师尽心准备、创造的。

  设计意图:

  这节课是在学生学习了一次函数、一元二次方程之后的二次函数的第一节课。从课本的体系来看,这节课的'知识目标,学生在原有知识的储备基础上是很容易迁移和接受的。那么这节课还有什么好设计的呢?……重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我意识到这节课的教学重点是“让学生经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”,有了这个认识,一切就变得简单了!

  设计流程:

  整节课的教学流程概括如下:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结。

  这样一气呵成的设计,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,让学生亲自经历探索和概括的过程,从而形成新知识。

  设计说明:

  1、对于实际问题的选择,我将4个问题整合于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得很有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

  2、对于练习的设计,尽量做到每题针对一个问题,并进行及时小结,也遵循了从开放到封闭的原则,达到了良好的效果。

  3、最后讨论题的设计和提出,我设计了一个探索性的问题:假如你是果园的主人,你准备多种几棵?这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题是整节课的一个高潮和精华,对学生的解答,不论对错,不论全面还是有所偏颇,我都给予肯定。事实证明:只要教师给了足够的空间,学生总能从各方面进行思考和解释。

《二次函数》教学反思2

  立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的

  第一节复习课,教学重点为二次函数的图象性质及应用。

  最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理

  二、

  2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的'组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷。

  2.本课遵循尊重学生,相信学生,依*学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动 。

  3.在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

《二次函数》教学反思3

  本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的作用。

  讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线。利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。

  成功之处:

  1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.

  2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神。

  3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的.图象和性质,也为今后探讨其他类函数的性质提供思路.

  4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。

  5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。

  不足之处:

  1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.

  2.作图展示时只说明了有问题的部分而没有展示优秀的部分,无法使学生获得成功的喜悦。

  3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.

  通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。

《二次函数》教学反思4

  复习目标:

  知识目标:

  1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;

  2、一元二次方程与抛物线的关系.

  3、利用二次函数解决实际问题。

  技能目标:

  培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。

  情感目标:

  1、通过问题情境和探索活动的创设,激发学生的学习兴趣;

  2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

  复习重、难点:函数综合题型

  复习方法:合作交流

  复习过程:

  一、知识梳理

  1、二次函数解析式的三种表示方法:

  (1)顶点式:(2)交点式:(3)一般式:

  2、填表:

  抛物线对称轴顶点坐标开口方向

  y=ax2

  当a>0时,

  开口

  当a<0时,

  开口

  Y=ax2+k

  Y=a(x-h)2

  y=a(x-h)2+k

  Y=ax2+bx+c

  3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而

  4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值

  自评分(每空4分,共100分)

  二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)

  已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:

  (1)abc(2)b2-4ac(3)2a+b(4)a+b+c

  (上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)

  2、已知抛物线y=x2+(2k+1)x-k2+k

  (1)求证:此抛物线与x轴总有两个不同的交点;

  (2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22=-2k2+2k+1,①求抛物线的解析式

  ②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。

  (此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)

  三、归纳小结:

  提问:通过本节课的练习,你得到了什么?

  四、用数学(利用二次函数解决实际问题)

  一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的'最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,

  (1)根据题意建立直角坐标系,并求出抛物线的解析式。

  (2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?

  (此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)

  五、拓展提升(供学有余力的学生做):(屏幕显示)

  已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0),B(x2,0),(x1≠x2)

  (1)求a的取值范围,并证明A、B两点都在原点的左侧;

  (2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。

  课堂反思:以前的复习课总是写满几块小黑板,弄得手上全是粉笔末,一节课下来,光是翻转小黑板就把自己搞得迷迷糊糊,并且学生还喊道:看不清楚。现在好了,利用多媒体,可以把要讲的知识点、学生要做的练习毫不含糊地全部展示给学生,确实做到了高容量、大密度。感觉很好。

《二次函数》教学反思5

  今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差.现在如果还是和原来那样复习,效率肯定不会好.以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评.可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成.今天复习的时候给自己定了一个复习计划.

  对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备.从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程.对于二次函数的综合运用还存在一定问题.同时还有求函数解析式,对于顶点式,和一般式也有一定的问题.利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调.

  一、本章知识点的主要内容有:

  1.二次函数的概念.考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数.

  2.求二次函数的解析式.用待定系数法求,设有三种形式,一般形式,分解式,配方式.另外还有根据实际问题求解析式.

  特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少.为了获得最大的利润,应该怎样定价格.这种是典型的二次函数解决实际问题的类型.同样的背景在八年级的时候也有出现,通过一元二次方程解决.

  3.二次函数图像的信息题.根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等.同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零.

  4.抛物线的平移.抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置.所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”.

  5.根据图像来判断一些代数式的符号.主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定.

  二、成功之处:

  教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。

  三、精彩之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:1.通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?2.在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:

  1.由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6.从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”.

  2.挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=-1对称点p’的坐标是(-4,3);(2)用点A、点p和对称轴;(3)用点A、点p和顶点的`纵坐标等.

  3.得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯.

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。内容及问题串如下: 四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

  四、反思之处:

  反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;

  反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;

  反思三,教师的经验是宝贵的,一定要开诚不公的交流;

  反思四,工作的责任心是必要的,一定要无私奉献;

  反思五,教师的工作是高尚的,来不的半点虚假。

  总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。

《二次函数》教学反思6

  本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k (h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

  通过本节课教学,得出几点体会:

  1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

  2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

  3、要使课堂真正成为学生展示自我的舞台。

  还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课

  堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的'独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

  1、某些记忆性的知识没记住。

  2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气

  3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。

  4、解题过程写得不全面,丢三落四的现象严重。

  针对上述问题,需要采取的措施与方法是:

  1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。

  2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。

  3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。

  4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。

  5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。

《二次函数》教学反思7

  在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。

  在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的.根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系。然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法。并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔。

《二次函数》教学反思8

  元月14日,高港区数学骨干教师培训班成员在我校组织了一次集体备课。其中一组成员讨论了由我主备的二次函数图象和性质的复习课,他们提出了许多宝贵的建议,在经过几天的精心修改后,我于元月21日在我校多功能教室上了这堂公开课。本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

  首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

  接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国20xx年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的'交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题2、问题3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。

  这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

  本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学(此文来自)水平更上一个台阶。

《二次函数》教学反思9

  立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。

  最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的.思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷.

  2.本课遵循尊重学生,相信学生,依学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动

  3、在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

《二次函数》教学反思10

  课后查看了数学课程标准中对二次函数的要求:

  1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

  3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

  4、会利用二次函数的图象求一元二次方程的近似解。

  发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的'教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。

《二次函数》教学反思11

  根据市骨干教师交流学习的安排,我在九年四班上了《2.1二次函数所描述的关系》这节课。这节课我首先让学生思考了列两个函数关系式的生活实际问题,然后又对函数的定义和分类进行了巩固。接着在学生探究两个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。

  课后,组内的老师认真地评析了本节课。结合组内老师的评课,我自己也进行了认真反思。

  成功之处:

  1、对二次函数的学习,本节课通过丰富的现实背景,通过学生感兴趣的问题,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动(经历数学化的过程),通过学生之间的合作与交流,通过分析实际问题,如探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系、

  2、设计大量的可以表示为二次函数、利用所学的二次函数知识可以解决的实际问题,发展学生的数学应用能力;利用“想一想”,提出进一步的最大产量的问题;用统计的方法得到关于最大产量的一种猜想,问题的最后让学生初步感受二次函数能解决最优化的实际问题。在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数;在以上两例的基础上,给出二次函数的定义,并举出以前所见到的一些二次函数关系式,为新知的理解做好了铺垫。

  3、在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的`新知,课堂达到了较好的教学效果。

  4、本节课我注重训练学生书写的规范性,让学生养成良好的答题规范习惯。

  不足之处:

  1、在分组教学时,对用统计的方法得到关于最大产量的一种猜想,课堂上有一部分学生没有充分参加计算,此处给学生的时间少一些。

  2、在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数的过程中,没有让学生有更多的交流和互相评价,有些学生对列函数关系式不是完全理解;

  总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

《二次函数》教学反思12

  因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用——————形如抛物线型》,结合老师的评课反思一下:

  我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)———————探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义—→关键点的坐标—→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式—→关键点的坐标—→实际意义,注意由坐标到实际意义转化时要取绝对值。)—————活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。

  评课整理如下:

  优点:

  思路比较清晰,过渡比较自然,题后反思比较到位。

  缺点:

  1、孙老师:对学生的评价比较模糊,比如有错误的情况下还打个对号。

  2、郭老师:解题步骤需加以规范和总结:一建二设三解四答。

  3、张老师:知识总结有些地方不太到位,比如,三种不同的情况为什么a的'取值不变?比较三种的优劣时可以从两个方面进行即确定解析式和解决最后实际问题。这样可以更体会更深刻一些。

  4、付主任:本节课有宽度,但缺乏深度,容量比较小,学案可以在浓缩一下,可以将问题一和问题二结合起来。

  5、齐主任:课堂模式和反映出来的教学理念比较过时,以学生为主体的教育理念体现的不够突出,如果把这节课放在课改之前可能是一堂好课。

  自我反思:

  1、从郭老师、张老师和孙老师的建议中,我应该加强对课的精细化要求,授课态度要严谨,对学生的一点一滴都要负责任,同时对教材知识的挖掘面面俱到,引领学生对知识能有一个更全面更深入的理解。

  2、受付主任建议的启发,可以尝试删掉问题一,由问题二承担起原问题一和问题二的双重作用,即:实际意义确定点的坐标;建立适当的坐标系。可以仍有第四小题引入到问题二(建好坐标系,顶点在原点处),然后实际问题中不可能存在现成的坐标系,引发学生思考坐标系的建立情况,然后加以拓展,并结合解决实际问题体会三种情况的优劣。这样应该可以节省一些时间,但我估计不会太多,最多能节省5分钟,但这或许就可以分析活学活用中的题目了。

  自己的体会是,因为这是第一课时,很多东西不可能面面俱到,知识的理解还需要有个循序渐进的过程(或许这也是一个托辞,这就是我们与名师的差距)。与名师相比,我们的课堂容量太小,一方面我们平时的课堂对知识中的思想方法挖掘渗透的太少,学生头脑中的知识不系统,形不成知识体系;另一方面,与本人的知识素养有关系,还需要进一步对教材知识进行深入挖掘,对新的教育理念进行学习,只有准备充足了,才能在课堂上游刃有余。

  3、结合齐主任的评课,我站在别人的高度试想了如果是云老师或宋老师来评课,会提出什么意见,我隐约感觉到这肯定不是一节好课,有很大的问题,至于是什么问题我也说不清楚,或许就如齐主任所说的教育理念比较陈腐导致课堂没有推陈出新的亮点,并且我觉得可以做大手术,如果真能请云老师或宋老师来评课的话,我或许就会豁然开朗,而不再这般的迷茫。

《二次函数》教学反思13

  二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义. 在教学中,我主要遇到了这样几个问题:

  1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的.教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。

  2、在细节方面我还有很多的不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的教学中,我会注意这些方面的教学。

  3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。

《二次函数》教学反思14

  一、成功之处:精心设计下,教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,

  二、精彩之处:(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点P(2,3),

  求这个二次函数的表达式中,设计了两个问题:1.通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?

  2.在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:1.由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6.从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”.

  2.挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点P(2,3)关于对称

  轴x=-1对称点P’的坐标是(-4,3);(2)用点A、点P和对称轴;(3)用点A、点P和顶点的纵坐标等.

  3.得出结论:凡是能用“顶点式”确定的,一定可用“一般式

  ”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯.

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。内容及问题串如下:

  1.如图,.某建筑物采用薄客型屋顶,屋顶的横截面形状为一段抛物线(曲线AOB).它的拱宽AB为6m,拱高CO为0.9m.试建立适当的直角坐标系,写出这段抛物线所对应的二次函数的表达式.

  问题(1)如何建立坐标系呢?

  问题2:分别选用哪种形式?

  问题3:建立坐标系后如何将已知条件中的高度、跨度等转化为点的坐标呢?

  三、遗憾之处:在课题引入后,由于对学生估计不足,再加上使用导学案的习惯,例题1分析思路后有学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完例1后用时间相对较多,对于后面的`教学造成小的影响,特别是对于探究二的处理时不够充分,造成一点遗憾。思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;反思三,教师的经验是宝贵的,一定要开诚不公的交流;反思四,工作的责任心是必要的,一定要无私奉献;反思五,教师的工作是高尚的,来不的半点虚假。《人教版九年级数学下册《确定二次函数的表达式》教学反思》/p><

《二次函数》教学反思15

  今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差。现在如果还是和原来那样复习,效率肯定不会好。以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评。可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成。今天复习的时候给自己定了一个复习计划。

  对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备。从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程。对于二次函数的综合运用还存在一定问题。同时还有求函数解析式,对于顶点式,和一般式也有一定的问题。利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调。

  一、本章知识点的主要内容有:

  1、二次函数的概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数。

  2、求二次函数的解析式。用待定系数法求,设有三种形式,一般形式,分解式,配方式。另外还有根据实际问题求解析式。

  特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。

  3、二次函数图像的信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。

  4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”。

  5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和—1时的函数值来确定。

  二、成功之处:

  教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。

  三、精彩之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(—1,—6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:

  1、通过已知顶点A的坐标(—1,—6),你从中还能获取什么信息?

  2、在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:

  1、由顶点(—1,—6),可知对称轴是直线x=—1,函数的最大(小)值是—6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。

  2、挖掘顶点坐标的内涵:

  (1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=—1对称点p’的坐标是(—4,3);

  (2)用点A、点p和对称轴;

  (3)用点A、点p和顶点的纵坐标等。

  3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的`能力。

  内容及问题串如下:

  四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

  五、反思之处:

  反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;

  反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;

  反思三,教师的经验是宝贵的,一定要开诚不公的交流;

  反思四,工作的责任心是必要的,一定要无私奉献;

  反思五,教师的工作是高尚的,来不的半点虚假。

  总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。

【《二次函数》教学反思】相关文章:

二次函数教学反思03-02

二次函数的教学反思04-22

二次函数教学反思05-28

《二次函数》教学反思08-14

二次函数概念教学反思08-22

初三二次函数教学反思04-08

《二次函数复习课》教学反思11-05

函数教学反思08-25

《二次函数与一元二次方程》教学反思04-06